Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664694

RESUMEN

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Asunto(s)
Camellia sinensis , Ritmo Circadiano , Fotosíntesis , Fotosíntesis/genética , Camellia sinensis/genética , Camellia sinensis/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Familia de Multigenes , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Fotoperiodo
2.
Plant Physiol ; 187(4): 2691-2715, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618099

RESUMEN

The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4-6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure-function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the "spruce-type" PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The "spruce-type" PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión a Clorofila/genética , Complejo de Proteína del Fotosistema II/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Picea/metabolismo
3.
Physiol Plant ; 174(1): e13598, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34792189

RESUMEN

Diatoms adapt to various aquatic light environments and play major roles in the global carbon cycle using their unique light-harvesting system, i.e. fucoxanthin chlorophyll a/c binding proteins (FCPs). Structural analyses of photosystem II (PSII)-FCPII and photosystem I (PSI)-FCPI complexes from the diatom Chaetoceros gracilis have revealed the localization and interactions of many FCPs; however, the entire set of FCPs has not been characterized. Here, we identify 46 FCPs in the newly assembled genome and transcriptome of C. gracilis. Phylogenetic analyses suggest that these FCPs can be classified into five subfamilies: Lhcr, Lhcf, Lhcx, Lhcz, and the novel Lhcq, in addition to a distinct type of Lhcr, CgLhcr9. The FCPs in Lhcr, including CgLhcr9 and some Lhcqs, have orthologous proteins in other diatoms, particularly those found in the PSI-FCPI structure. By contrast, the Lhcf subfamily, some of which were found in the PSII-FCPII complex, seems to be diversified in each diatom species, and the number of Lhcqs differs among species, indicating that their diversification may contribute to species-specific adaptations to light. Further phylogenetic analyses of FCPs/light-harvesting complex (LHC) proteins using genome data and assembled transcriptomes of other diatoms and microalgae in public databases suggest that our proposed classification of FCPs is common among various red-lineage algae derived from secondary endosymbiosis of red algae, including Haptophyta. These results provide insights into the loss and gain of FCP/LHC subfamilies during the evolutionary history of the red algal lineage.


Asunto(s)
Proteínas de Unión a Clorofila , Diatomeas , Clorofila A/química , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Filogenia , Xantófilas
4.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613939

RESUMEN

Light-harvesting chlorophyll a/b-binding (LHC) superfamily proteins play a vital role in photosynthesis. Although the physiological and biochemical functions of LHC genes have been well-characterized, the structural evolution and functional differentiation of the products need to be further studied. In this paper, we report the genome-wide identification and phylogenetic analysis of LHC genes in photosynthetic organisms. A total of 1222 non-redundant members of the LHC family were identified from 42 species. According to the phylogenetic clustering of their homologues with Arabidopsis thaliana, they can be divided into four subfamilies. In the subsequent evolution of land plants, a whole-genome replication (WGD) event was the driving force for the evolution and expansion of the LHC superfamily, with its copy numbers rapidly increasing in angiosperms. The selection pressure of photosystem II sub-unit S (PsbS) and ferrochelatase (FCII) families were higher than other subfamilies. In addition, the transcriptional expression profiles of LHC gene family members in different tissues and their expression patterns under exogenous abiotic stress conditions significantly differed, and the LHC genes are highly expressed in mature leaves, which is consistent with the conclusion that LHC is mainly involved in the capture and transmission of light energy in photosynthesis. According to the expression pattern and copy number of LHC genes in land plants, we propose different evolutionary trajectories in this gene family. This study provides a basis for understanding the molecular evolutionary characteristics and evolution patterns of plant LHCs.


Asunto(s)
Arabidopsis , Plantas , Filogenia , Clorofila A , Plantas/genética , Proteínas de Unión a Clorofila/genética , Genoma , Arabidopsis/genética , Evolución Molecular , Proteínas de Plantas/genética
5.
Plant Physiol ; 182(1): 123-135, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704721

RESUMEN

Riboswitches are small cis-regulatory RNA elements that regulate gene expression by conformational changes in response to ligand binding. Synthetic riboswitches have been engineered as versatile and innovative tools for gene regulation by external application of their ligand in prokaryotes and eukaryotes. In plants, synthetic riboswitches were used to regulate gene expression in plastids, but the application of synthetic riboswitches for the regulation of nuclear-encoded genes in planta remains to be explored. Here, we characterize the properties of a theophylline-responsive synthetic aptazyme for control of nuclear-encoded transgenes in Arabidopsis (Arabidopsis thaliana). Activation of the aptazyme, inserted in the 3' UTR of the target gene, resulted in rapid self-cleavage and subsequent decay of the mRNA. This riboswitch allowed reversible, theophylline-dependent down-regulation of the GFP reporter gene in a dose- and time-dependent manner. Insertion of the riboswitch into the ONE HELIX PROTEIN1 gene allowed complementation of ohp1 mutants and induction of the mutant phenotype by theophylline. GFP and ONE HELIX PROTEIN1 transcript levels were downregulated by up to 90%, and GFP protein levels by 95%. These results establish artificial riboswitches as tools for externally controlled gene expression in synthetic biology in plants or functional crop design.


Asunto(s)
Riboswitch/efectos de los fármacos , Riboswitch/genética , Teofilina/farmacología , Regiones no Traducidas 3'/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética
6.
BMC Plant Biol ; 20(1): 456, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023504

RESUMEN

BACKGROUND: Although our knowledge about diatom photosynthesis has made huge progress over the last years, many aspects about their photosynthetic apparatus are still enigmatic. According to published data, the spatial organization as well as the biochemical composition of diatom thylakoid membranes is significantly different from that of higher plants. RESULTS: In this study the pigment protein complexes of the diatom Thalassiosira pseudonana were isolated by anion exchange chromatography. A step gradient was used for the elution process, yielding five well-separated pigment protein fractions which were characterized in detail. The isolation of photosystem (PS) core complex fractions, which contained fucoxanthin chlorophyll proteins (FCPs), enabled the differentiation between different FCP complexes: FCP complexes which were more closely associated with the PSI and PSII core complexes and FCP complexes which built-up the peripheral antenna. Analysis by mass spectrometry showed that the FCP complexes associated with the PSI and PSII core complexes contained various Lhcf proteins, including Lhcf1, Lhcf2, Lhcf4, Lhcf5, Lhcf6, Lhcf8 and Lhcf9 proteins, while the peripheral FCP complexes were exclusively composed of Lhcf8 and Lhcf9. Lhcr proteins, namely Lhcr1, Lhcr3 and Lhcr14, were identified in fractions containing subunits of the PSI core complex. Lhcx1, Lhcx2 and Lhcx5 proteins co-eluted with PSII protein subunits. The first fraction contained an additional Lhcx protein, Lhcx6_1, and was furthermore characterized by high concentrations of photoprotective xanthophyll cycle pigments. CONCLUSION: The results of the present study corroborate existing data, like the observation of a PSI-specific antenna complex in diatoms composed of Lhcr proteins. They complement other data, like e.g. on the protein composition of the 21 kDa FCP band or the Lhcf composition of FCPa and FCPb complexes. They also provide interesting new information, like the presence of the enzyme diadinoxanthin de-epoxidase in the Lhcx-containing PSII fraction, which might be relevant for the process of non-photochemical quenching. Finally, the high negative charge of the main FCP fraction may play a role in the organization and structure of the native diatom thylakoid membrane. Thus, the results present an important contribution to our understanding of the complex nature of the diatom antenna system.


Asunto(s)
Proteínas de Unión a Clorofila/metabolismo , Diatomeas/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Pigmentos Biológicos/aislamiento & purificación , Proteínas de Unión a Clorofila/genética , Cromatografía por Intercambio Iónico , Diatomeas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética
7.
Plant Physiol ; 179(1): 195-208, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30397023

RESUMEN

The reaction center (RC) of photosystem II (PSII), which is composed of D1, D2, PsbI, and cytochrome b559 subunits, forms at an early stage of PSII biogenesis. However, it is largely unclear how these components assemble to form a functional unit. In this work, we show that synthesis of the PSII core proteins D1/D2 and formation of the PSII RC is blocked specifically in the absence of ONE-HELIX PROTEIN1 (OHP1) and OHP2 proteins in Arabidopsis (Arabidopsis thaliana), indicating that OHP1 and OHP2 are essential for the formation of the PSII RC. Mutagenesis of the chlorophyll-binding residues in OHP proteins impairs their function and/or stability, suggesting that they may function in the binding of chlorophyll in vivo. We further show that OHP1, OHP2, and HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244), together with D1, D2, PsbI, and cytochrome b559, form a complex. We designated this complex the PSII RC-like complex to distinguish it from the RC subcomplex in the intact PSII complex. Our data imply that OHP1, OHP2, and HCF244 are present in this PSII RC-like complex for a limited time at an early stage of PSII de novo assembly and of PSII repair under high-light conditions. In a subsequent stage of PSII biogenesis, OHP1, OHP2, and HCF244 are released from the PSII RC-like complex and replaced by the other PSII subunits. Together with previous reports on the cyanobacterium Synechocystis, our results demonstrate that the process of PSII RC assembly is highly conserved among photosynthetic species.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/fisiología , Factores Eucarióticos de Iniciación/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Alineación de Secuencia , Tilacoides/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(9): 2212-2217, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28179567

RESUMEN

Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión a Clorofila/genética , Proteasas de Cisteína/genética , Regulación de la Expresión Génica de las Plantas , Plantones/genética , Serpinas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/metabolismo , Proteasas de Cisteína/química , Proteasas de Cisteína/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Cinética , Modelos Moleculares , Inmunidad de la Planta/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantones/crecimiento & desarrollo , Plantones/inmunología , Plantones/metabolismo , Serpinas/química , Serpinas/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
9.
Plant Physiol ; 177(4): 1453-1472, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29930106

RESUMEN

The members of the light-harvesting complex protein family, which include the one-helix proteins (OHPs), are characterized by one to four membrane-spanning helices. These proteins function in light absorption and energy dissipation, sensing light intensity, and triggering photomorphogenesis or the binding of chlorophyll and intermediates of chlorophyll biosynthesis. Arabidopsis (Arabidopsis thaliana) contains two OHPs, while four homologs (named high-light-induced proteins) exist in Synechocystis PCC6803. Various functions have been assigned to high-light-induced proteins, ranging from photoprotection and the assembly of photosystem I (PSI) and PSII to regulation of the early steps of chlorophyll biosynthesis, but little is known about the function of the two plant OHPs. Here, we show that the two Arabidopsis OHPs form heterodimers and that the stromal part of OHP2 interacts with the plastid-localized PSII assembly factor HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244). Moreover, concurrent accumulation of the two OHPs and HCF244 is critical for the stability of all three proteins. In particular, the absence of OHP2 leads to the complete loss of OHP1 and HCF244. We used a virus-induced gene silencing approach to minimize the expression of OHP1 or OHP2 in adult Arabidopsis plants and revealed that OHP2 is essential for the accumulation of the PSII core subunits, while the other photosynthetic complexes and the major light-harvesting complex proteins remained unaffected. We examined the potential functions of the OHP1-OHP2-HCF244 complex in the assembly and/or repair of PSII and propose a role for this heterotrimeric complex in thylakoid membrane biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/biosíntesis , Clorofila/genética , Proteínas de Unión a Clorofila/genética , Factores Eucarióticos de Iniciación/genética , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema II/genética , Plantas Modificadas Genéticamente , Estabilidad Proteica , Subunidades de Proteína , Tilacoides/metabolismo
10.
Plant Physiol ; 176(3): 2277-2291, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29438089

RESUMEN

The cellular functions of two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1 and OHP2 (also named LIGHT-HARVESTING-LIKE2 [LIL2] and LIL6, respectively, because they have sequence similarity to light-harvesting chlorophyll a/b-binding proteins), remain unclear. Tagged null mutants of OHP1 and OHP2 (ohp1 and ohp2) showed stunted growth with pale-green leaves on agar plates, and these mutants were unable to grow on soil. Leaf chlorophyll fluorescence and the composition of thylakoid membrane proteins revealed that ohp1 deletion substantially affected photosystem II (PSII) core protein function and led to reduced levels of photosystem I core proteins; however, it did not affect LHC accumulation. Transgenic ohp1 plants rescued with OHP1-HA or OHP1-Myc proteins developed a normal phenotype. Using these tagged OHP1 proteins in transgenic plants, we localized OHP1 to thylakoid membranes, where it formed protein complexes with both OHP2 and High Chlorophyll Fluorescence244 (HCF244). We also found PSII core proteins D1/D2, HCF136, and HCF173 and a few other plant-specific proteins associated with the OHP1/OHP2-HCF244 complex, suggesting that these complexes are early intermediates in PSII assembly. OHP1 interacted directly with HCF244 in the complex. Therefore, OHP1 and HCF244 play important roles in the stable accumulation of PSII.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Unión a Clorofila/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Complejo de Proteína del Fotosistema II/genética , Plantas Modificadas Genéticamente , Proteínas de las Membranas de los Tilacoides/genética
11.
Proc Natl Acad Sci U S A ; 112(23): 7303-8, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26016527

RESUMEN

Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (responsive to desiccation 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles' heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas de Unión a Clorofila/fisiología , Herbivoria , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Proteasas de Cisteína/metabolismo , Etiolado , Técnicas de Silenciamiento del Gen , Hipocótilo/crecimiento & desarrollo
12.
Biochim Biophys Acta ; 1857(4): 396-407, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26646103

RESUMEN

In the family of chlorophyll binding proteins, single helix small CAB-like proteins (SCPs) are found in all organisms performing oxygenic photosynthesis. Here, we investigated the function of these stress-inducible proteins in the cyanobacterium Synechocystis sp. PCC 6803. We compared physiological, proteome and transcriptome traits of a Photosystem I (PSI) deletion strain, which constitutively induces SCPs, and a PSI-less/ScpABCDE(-) without SCPs. The SCP mutant cells were larger in size, showed irregular thylakoid structure and differed in cell-surface morphology. Deletion of scp genes strongly affected the carbon (C) and nitrogen (N) balance, resulting in accumulation of carbohydrates and a decrease in N-rich compounds (proteins and chlorophyll). Data from transcriptomic and metabolomic experiments revealed a role of SCPs in the control of chlorophyll biosynthesis. Additionally, SCPs diminished formation of reactive oxygen species, thereby preventing damage within Photosystem II. We conclude that the lack of SCP-function to remove free chlorophyll under stress conditions has a large impact on the metabolism of the entire cell.


Asunto(s)
Carbono/metabolismo , Proteínas de Unión a Clorofila/fisiología , Nitrógeno/metabolismo , Synechocystis/metabolismo , Proteínas de Unión a Clorofila/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Homeostasis , Metabolómica , Especies Reactivas de Oxígeno/metabolismo
13.
Plant Cell Physiol ; 58(11): 2026-2039, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136458

RESUMEN

Light-harvesting-like (LIL) proteins are a group of proteins that share a consensus amino acid sequence with light-harvesting Chl-binding (LHC) proteins. We hypothesized that they might be involved in photosynthesis-related processes. In order to gain a better understanding of a potential role in photosynthesis-related processes, we examined the most recently identified LIL protein, LIL8/PSB33. Recently, it was suggested that this protein is an auxiliary PSII core protein which is involved in organization of the PSII supercomplex. However, we found that the majority of LIL8/PSB33 was localized in stroma lamellae, where PSI is predominant. Moreover, the PSI antenna sizes measured under visible light were slightly increased in the lil8 mutants which lack LIL8/PSB33 protein. Analysis of fluorescence decay kinetics and fluorescence decay-associated spectra indicated that energy transfer to quenching sites within PSI was partially hampered in these mutants. On the other hand, analysis of the steady-state fluorescence spectra in these mutants indicates that a population of LHCII is energetically disconnected from PSII. Taken together, we suggest that LIL8/PSB33 is involved in the fine-tuning of light harvesting and/or energy transfer around both photosystems.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila , Proteínas de Unión a Clorofila/genética , Metabolismo Energético , Fluorescencia , Pleiotropía Genética , Mutación , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Tilacoides/metabolismo
14.
Plant Cell Physiol ; 58(4): 851-861, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28184910

RESUMEN

The light-harvesting complex I (LHCI) proteins in Arabidopsis thaliana are encoded by six genes. Major LHCI proteins (Lhca1-Lhca4) harvest light energy and transfer the resulting excitation energy to the PSI core by forming a PSI supercomplex. In contrast, the minor LHCI proteins Lhca5 and Lhca6 contribute to supercomplex formation between the PSI supercomplex and the chloroplast NADH dehydrogenase-like (NDH) complex, although Lhca5 is also solely associated with the PSI supercomplex. Lhca6 was branched from Lhca2 during the evolution of land plants. In this study, we focused on the molecular evolution involved in the transition from a major LHCI, Lhca2, to the linker protein Lhca6. To elucidate the domains of Lhca6 responsible for linker function, we systematically swapped domains between the two LHCI proteins. To overcome problems due to the low stability of chimeric proteins, we employed sensitive methods to evaluate supercomplex formation: we monitored NDH activity by using Chl fluorescence analysis and detected NDH-PSI supercomplex formation by using protein blot analysis in the form of two-dimensional blue-native (BN)/SDS-PAGE. The stromal loop of Lhca6 was shown to be necessary and sufficient for linker function. Chimeric Lhca6, in which the stromal loop was substituted by that of Lhca2, was not functional as a linker and was detected at the position of the PSI supercomplex in the BN-polyacrylamide gel. The stromal loop of Lhca6 is likely to be necessary for the interaction with chloroplast NDH, rather than for the association with the PSI supercomplex.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Cloroplastos/metabolismo , Simulación por Computador , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos Multiproteicos , NADH Deshidrogenasa/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Plantas Modificadas Genéticamente , Dominios Proteicos
15.
Int J Mol Sci ; 18(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112140

RESUMEN

Plastid-nucleus-located WHIRLY1 protein plays a role in regulating leaf senescence and is believed to associate with the increase of reactive oxygen species delivered from redox state of the photosynthetic electron transport chain. In order to make sure whether WHIRLY1 plays a role in photosynthesis, in this study, the performances of photosynthesis were detected in Arabidopsis whirly1 knockout (kowhy1) and plastid localized WHIRLY1 overexpression (oepWHY1) plants. Loss of WHIRLY1 leads to a higher photochemical quantum yield of photosystem I Y(I) and electron transport rate (ETR) and a lower non-photochemical quenching (NPQ) involved in the thermal dissipation of excitation energy of chlorophyll fluorescence than the wild type. Further analyses showed that WHIRLY1 interacts with Light-harvesting protein complex I (LHCA1) and affects the expression of genes encoding photosystem I (PSI) and light harvest complexes (LHCI). Moreover, loss of WHIRLY1 decreases chloroplast NAD(P)H dehydrogenase-like complex (NDH) activity and the accumulation of NDH supercomplex. Several genes encoding the PSI-NDH complexes are also up-regulated in kowhy1 and the whirly1whirly3 double mutant (ko1/3) but steady in oepWHY1 plants. However, under high light conditions (800 µmol m-2 s-1), both kowhy1 and ko1/3 plants show lower ETR than wild-type which are contrary to that under normal light condition. Moreover, the expression of several PSI-NDH encoding genes and ERF109 which is related to jasmonate (JA) response varied in kowhy1 under different light conditions. These results indicate that WHIRLY1 is involved in the alteration of ETR by affecting the activities of PSI and supercomplex formation of PSI with LHCI or NDH and may acting as a communicator between the plastids and the nucleus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión a Clorofila/genética , Cloroplastos/genética , Proteínas de Unión al ADN/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/genética , Unión Proteica
16.
Proteomics ; 16(9): 1386-97, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26900021

RESUMEN

Changes in leaf soluble proteome were explored in 3-month-old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1-50 µM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked-nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2-DE (linear 4-7 pH gradient). Analysis of CCB-stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC-MS/MS. In both populations, Cu excess impacted both light-dependent (OEE, cytochrome b6-f complex, and chlorophyll a-b binding protein), and -independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin-NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S-containing amino-acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 (http//proteomecentral.proteomexchange.org/dataset/PXD001930).


Asunto(s)
Adaptación Fisiológica/genética , Agrostis/efectos de los fármacos , Sulfato de Cobre/toxicidad , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/efectos de los fármacos , Proteoma/genética , Agrostis/genética , Agrostis/metabolismo , Clorofila/genética , Clorofila/metabolismo , Clorofila A , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Ontología de Genes , Anotación de Secuencia Molecular , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Solubilidad , Estrés Fisiológico
17.
Proc Natl Acad Sci U S A ; 110(3): 1053-8, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277585

RESUMEN

The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for "green" biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/genética , Genoma Bacteriano , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Cianobacterias/metabolismo , Evolución Molecular , Variación Genética , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Filogenia , Plastidios/genética , Homología de Secuencia de Aminoácido
18.
Angew Chem Int Ed Engl ; 55(24): 6901-5, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27098554

RESUMEN

The ability to tune the light-absorption properties of chlorophylls by their protein environment is the key to the robustness and high efficiency of photosynthetic light-harvesting proteins. Unfortunately, the intricacy of the natural complexes makes it very difficult to identify and isolate specific protein-pigment interactions that underlie the spectral-tuning mechanisms. Herein we identify and demonstrate the tuning mechanism of chlorophyll spectra in type II water-soluble chlorophyll binding proteins from Brassicaceae (WSCPs). By comparing the molecular structures of two natural WSCPs we correlate a shift in the chlorophyll red absorption band with deformation of its tetrapyrrole macrocycle that is induced by changing the position of a nearby tryptophan residue. We show by a set of reciprocal point mutations that this change accounts for up to 2/3 of the observed spectral shift between the two natural variants.


Asunto(s)
Proteínas de Unión a Clorofila/química , Clorofila/química , Luz , Brassicaceae/química , Proteínas de Unión a Clorofila/genética , Modelos Moleculares , Estructura Molecular , Mutación Puntual
19.
Biochim Biophys Acta ; 1837(8): 1235-46, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24704151

RESUMEN

Violaxanthin-chlorophyll a binding protein (VCP) is the major light harvesting complex (LHC) of the Heterokonta Nannochloropsis gaditana. It binds chlorophyll a, violaxanthin and vaucheriaxanthin, the last in the form of 19' deca/octanoate esters. Photosynthetic apparatus of algae belonging to this group have been poorly characterized in the past, but they are now receiving an increasing interest also because of their possible biotechnological application in biofuel production. In this work, isolated VCP proteins have been studied by means of advanced EPR techniques in order to prove the presence of the photoprotective mechanism based on the triplet-triplet energy transfer (TTET), occurring between chlorophyll and carotenoid molecules. This process has been observed before in several light harvesting complexes belonging to various photosynthetic organisms. We used Optically Detected Magnetic Resonance (ODMR) to identify the triplet states populated by photo-excitation, and describe the optical properties of the chromophores carrying the triplet states. In parallel, time-resolved EPR (TR-EPR) and pulse EPR have been employed to get insight into the TTET mechanism and reveal the structural features of the pigment sites involved in photoprotection. The analysis of the spectroscopic data shows a strong similarity among VCP, FCP from diatoms and LHC-II from higher plants. Although these antenna proteins have differentiated sequences and bind different pigments, results suggest that in all members of the LHC superfamily there is a protein core with a conserved structural organization, represented by two central carotenoids surrounded by five chlorophyll a molecules, which plays a fundamental photoprotective role in Chl triplet quenching through carotenoid triplet formation.


Asunto(s)
Proteínas de Unión a Clorofila/genética , Clorofila/genética , Fotosíntesis/genética , Secuencia de Aminoácidos , Carotenoides/química , Carotenoides/genética , Clorofila/química , Clorofila/metabolismo , Clorofila A , Proteínas de Unión a Clorofila/química , Transferencia de Energía , Complejos de Proteína Captadores de Luz/genética , Conformación Proteica , Estramenopilos/genética , Estramenopilos/crecimiento & desarrollo , Xantófilas/química , Xantófilas/genética
20.
Biochim Biophys Acta ; 1837(12): 1981-1988, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25291424

RESUMEN

Minor light-harvesting complexes (Lhcs) CP24, CP26 and CP29 occupy a position in photosystem II (PSII c' plants between the major light-harvesting complexes LHCII and the PSII core subunits. Lack of minor Lhcs in vivo causes impairment of PSII organization, and negatively affects electron transport rates anc photoprotection capacity. Here we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoid membranes isolated from Arabidopsis thaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs. the functional connection ofLHCII to the PSII cores appears to be seriously impaired whereas the "disconnected" LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation ofLHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally. fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macroorganization of PSII.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión a Clorofila/genética , Proteínas de Cloroplastos/genética , Mutación , Complejo de Proteína del Fotosistema II/genética , Ribonucleoproteínas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/química , Clorofila/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Transferencia de Energía , Fluorescencia , Immunoblotting , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/metabolismo , Ribonucleoproteínas/metabolismo , Espectrometría de Fluorescencia , Tilacoides/genética , Tilacoides/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA