Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906095

RESUMEN

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Asunto(s)
Quimera , Organogénesis , Animales , Humanos , Quimera/embriología , Implantación del Embrión , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Madre Embrionarias , Modelos Biológicos , Organoides , Medicina Regenerativa , Ingeniería de Tejidos/métodos
2.
Cell ; 142(5): 787-99, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813264

RESUMEN

The complexity of organogenesis hinders in vitro generation of organs derived from a patient's pluripotent stem cells (PSCs), an ultimate goal of regenerative medicine. Mouse wild-type PSCs injected into Pdx1(-/-) (pancreatogenesis-disabled) mouse blastocysts developmentally compensated vacancy of the pancreatic "developmental niche," generating almost entirely PSC-derived pancreas. To examine the potential for xenogenic approaches in blastocyst complementation, we injected mouse or rat PSCs into rat or mouse blastocysts, respectively, generating interspecific chimeras and thus confirming that PSCs can contribute to xenogenic development between mouse and rat. The development of these mouse/rat chimeras was primarily influenced by host blastocyst and/or foster mother, evident by body size and species-specific organogenesis. We further injected rat wild-type PSCs into Pdx1(-/-) mouse blastocysts, generating normally functioning rat pancreas in Pdx1(-/-) mice. These data constitute proof of principle for interspecific blastocyst complementation and for generation in vivo of organs derived from donor PSCs using a xenogenic environment.


Asunto(s)
Blastocisto , Quimera/embriología , Páncreas/citología , Páncreas/embriología , Células Madre Pluripotentes , Animales , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/terapia , Desarrollo Embrionario , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos , Organogénesis , Ratas , Ratas Wistar , Transactivadores/genética
3.
Nature ; 566(7745): 490-495, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30787436

RESUMEN

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Gastrulación , Organogénesis , Análisis de la Célula Individual , Animales , Linaje de la Célula/genética , Quimera/embriología , Quimera/genética , Quimera/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Endotelio/citología , Endotelio/embriología , Endotelio/metabolismo , Femenino , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/genética , Masculino , Mesodermo/citología , Mesodermo/embriología , Ratones , Mutación/genética , Células Mieloides/citología , Organogénesis/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Proteína 1 de la Leucemia Linfocítica T Aguda/deficiencia , Proteína 1 de la Leucemia Linfocítica T Aguda/genética
5.
Nature ; 563(7729): 126-130, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30305734

RESUMEN

Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Organogénesis , Prosencéfalo/citología , Prosencéfalo/embriología , Animales , Quimera/embriología , Quimera/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Dominio Doblecortina , Femenino , Prueba de Complementación Genética , Células Germinativas/metabolismo , Hipocampo/anatomía & histología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/deficiencia , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/deficiencia , Fenotipo , Prosencéfalo/anatomía & histología , Prosencéfalo/fisiología
6.
Dev Biol ; 476: 209-217, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33891964

RESUMEN

A small number of pluripotent cells within early embryo gives rise to all cells in the adult body, including germ cells. Hence, any mutations occurring in the pluripotent cell population are at risk of being propagated to their daughter cells and could lead to congenital defects or embryonic lethality and pose a risk of being transmitted to future generations. The observation that genetic errors are relatively common in preimplantation embryos, but their levels reduce as development progresses, suggests the existence of mechanisms for clearance of aberrant, unfit or damaged cells. Although early human embryogenesis is largely experimentally inaccessible, pluripotent stem cell (PSC) lines can be derived either from the inner cell mass (ICM) of a blastocyst or by reprogramming somatic cells into an embryonic stem cell-like state. PSCs retain the ability to differentiate into any cell type in vitro and, hence, they represent a unique and powerful tool for studying otherwise intractable stages of human development. The advent of PSCs has also opened up a possibility of developing regenerative medicine therapies, either through PSC differentiation in vitro or by creating interspecies chimeras for organ replacement. Here, we discuss the emerging evidence of cell selection in human PSC populations in vivo and in vitro and we highlight the implications of understanding this phenomenon for human development and regenerative medicine.


Asunto(s)
Aptitud Genética/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Blastocisto/metabolismo , Diferenciación Celular , Quimera/embriología , Quimera/genética , Embrión de Mamíferos , Células Madre Embrionarias , Aptitud Genética/fisiología , Humanos , Células Madre Pluripotentes/fisiología , Medicina Regenerativa
8.
Nature ; 540(7631): 51-59, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905428

RESUMEN

Chimaeras are both monsters of the ancient imagination and a long-established research tool. Recent advances, particularly those dealing with the identification and generation of various kinds of stem cells, have broadened the repertoire and utility of mammalian interspecies chimaeras and carved out new paths towards understanding fundamental biology as well as potential clinical applications.


Asunto(s)
Quimera , Células Madre/citología , Animales , Evolución Biológica , Blastocisto/citología , Linaje de la Célula , Quimera/embriología , Evaluación Preclínica de Medicamentos , Humanos , Especificidad de la Especie , Investigación con Células Madre/ética , Investigación con Células Madre/legislación & jurisprudencia
10.
Exp Cell Res ; 389(2): 111908, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32057751

RESUMEN

Both embryo-derived (ESC) and induced pluripotent stem cell (iPSC) lines have been established in rabbit. They exhibit the essential characteristics of primed pluripotency. In this review, we described their characteristic features at both molecular and functional levels. We also described the attempts to reprogram rabbit pluripotent stem cells (rbPSCs) toward the naive state of pluripotency using methods established previously to capture this state in rodents and primates. In the last section, we described and discussed our current knowledge of rabbit embryo development pertaining to the mechanisms of early lineage segregation. We argued that the molecular signature of naive-state pluripotency differs between mice and rabbits. We finally discussed some of the key issues to be addressed for capturing the naive state in rbPSCs, including the generation of embryo/PSC chimeras.


Asunto(s)
Quimera/embriología , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Animales , Diferenciación Celular , Quimera/metabolismo , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Conejos
11.
Development ; 144(2): 175-186, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28096211

RESUMEN

Naïve pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be 'reset' to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naïve state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naïve pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naïve pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naïve ESCs.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Madre Pluripotentes/fisiología , Primates/embriología , Animales , Blastocisto/citología , Diferenciación Celular , Células Cultivadas , Quimera/embriología , Embrión de Mamíferos , Células Madre Embrionarias/fisiología , Estratos Germinativos/citología , Humanos , Ratones , Ratas
12.
Biochem Biophys Res Commun ; 510(1): 78-84, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30660369

RESUMEN

Generating human organs inside interspecies chimeras might one day produce patient-specific organs for clinical applications, but further advances in identifying human chimera-competent pluripotent stem (PS) cells are needed. Moreover, the potential for human PS cells to contribute to the brains in human-animal chimeras raises ethical questions. The use of non-human primate (NHP) chimera-competent PS cells would allow one to test interspecies organogenesis strategies while also bypassing such ethical concerns. Here, we provide the first evidence for a putative chimera-competent pluripotent state in NHPs. Using histone deacetylase (HDAC) and selective kinase inhibition, we converted the PS cells of an Old World monkey, the African Green monkey (aGM), to an ERK-independent cellular state that can be propagated in culture conditions similar to those that sustain chimera-competency in rodent cells. The obtained stem cell lines indefinitely self-renew in MEK inhibitor-containing culture media lacking serum replacement and FGF. Compared to conventional PS cells, the novel stem cells express elevated levels of KLF4, exhibit more intense nuclear staining for TFE3, and manifest increased mitochondrial membrane depolarization. These data are preliminary but indicate that the key to deriving primate chimera-competent PS cells is to shield cells from the activation of ERK, PKC, and WNT signaling. Because of the similarity of aGMs to humans, the more ethically palatable use of NHP cells, and the more similar gestation length between aGMs and large animals such as sheep, the aGM cell lines described herein will serve as a useful tool for evaluating the efficacy and safety of interspecies organogenesis strategies. Future studies will examine chimera-competency and generalizability to human cells.


Asunto(s)
Quimera/embriología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Células Madre Pluripotentes/citología , Animales , Bioética , Células Cultivadas , Chlorocebus aethiops , Humanos , Factor 4 Similar a Kruppel , Organogénesis
13.
Nature ; 504(7479): 282-6, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24172903

RESUMEN

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3ß signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Animales , Blastocisto/citología , Reprogramación Celular , Quimera/embriología , Cromatina/metabolismo , Metilación de ADN , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Femenino , Estratos Germinativos/citología , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Masculino , Ratones , Mórula/citología , Organogénesis , Regiones Promotoras Genéticas/genética , Medicina Regenerativa , Reproducibilidad de los Resultados , Transducción de Señal , Inactivación del Cromosoma X
14.
Genesis ; 56(6-7): e23219, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30134069

RESUMEN

For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cresta Neural/citología , Cresta Neural/fisiología , Animales , Pico/embriología , Huesos/embriología , Región Branquial , Diferenciación Celular/fisiología , Quimera/embriología , Patos/embriología , Cara/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Cresta Neural/embriología , Codorniz/embriología , Esqueleto/embriología , Cráneo/embriología , Especificidad de la Especie
15.
Dev Biol ; 427(1): 106-120, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28499799

RESUMEN

In order to examine interactions between cells originating from different species during embryonic development we constructed interspecific mouse↔rat chimaeras by aggregation of 8-cell embryos. Embryos of both species expressed different fluorescent markers (eGFP and DsRed), which enabled us to follow the fate of both components from the moment of aggregation until adulthood. We revealed that in majority of embryos the blastocyst cavity appeared inside the group of rat cells, while the mouse component was allocated to the deeper layer of the inner cell mass and to the polar trophectoderm. However, due to rearrangement of all cells and selective elimination of rat cells, shortly before implantation all primary lineages became chimaeric. Moreover, despite the fact that rat cells were always present in the mural trophectoderm, majority of mouse↔rat chimaeric blastocysts implanted in mouse uterus, and out of those 46% developed into foetuses and pups, half of which were chimaeric. In contrast to mural trophectoderm, polar trophectoderm derivatives, i.e. the placentae of all chimaeras were exclusively of mouse origin. This strongly suggests that the successful postimplantation development of chimaeras is enabled by gradual elimination of xenogeneic cells from the nascent placenta. The size of chimaeric newborns was within the limits of control mouse neonates. The rat component located preferentially in the anterior part of the body, where it contributed mainly to the neural tube. Our observations indicate that although chimaeric animals were able to reach adulthood, high contribution of rat cells tended to diminish their viability.


Asunto(s)
Quimera/embriología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Animales , Animales Recién Nacidos , Blastocisto/citología , Blastocisto/metabolismo , Agregación Celular/genética , Linaje de la Célula/genética , Quimera/genética , Quimera/crecimiento & desarrollo , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Microscopía Fluorescente , Embarazo , Ratas Transgénicas , Ratas Wistar , Especificidad de la Especie , Imagen de Lapso de Tiempo/métodos
16.
Development ; 142(18): 3222-30, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26023098

RESUMEN

Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro differentiation, as ethical concerns preclude generation of human-human or human-animal chimeras. To circumvent this issue, we developed a functional assay utilizing interspecific blastocyst injection and in vitro culture (interspecies in vitro chimera assay) that enables the development and observation of embryos up to headfold stage. The assay uses mouse pre-implantation embryos and rat, monkey and human PSCs to create interspecies chimeras cultured in vitro to the early egg-cylinder stage. Intra- and interspecific chimera assays with rodent PSC lines were performed to confirm the consistency of results in vitro and in vivo. The behavior of chimeras developed in vitro appeared to recapitulate that of chimeras developed in vivo; that is, PSC-derived cells survived and were integrated into the epiblast of egg-cylinder-stage embryos. This indicates that the interspecific in vitro chimera assay is useful in evaluating the chimera-forming ability of rodent PSCs. However, when human induced PSCs (both conventional and naïve-like types) were injected into mouse embryos and cultured, some human cells survived but were segregated; unlike epiblast-stage rodent PSCs, they never integrated into the epiblast of egg-cylinder-stage embryos. These data suggest that the mouse-human interspecies in vitro chimera assay does not accurately reflect the early developmental potential/process of hPSCs. The use of evolutionarily more closely related species as host embryos might be necessary to evaluate the developmental potency of hPSCs.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Quimera/embriología , Desarrollo Embrionario/fisiología , Técnicas In Vitro/métodos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Animales , Línea Celular , Haplorrinos , Humanos , Ratones , Análisis por Micromatrices , Microinyecciones , Ratas , Especificidad de la Especie
17.
Proc Biol Sci ; 285(1879)2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848645

RESUMEN

Whole-body chimaeras (organisms composed of genetically distinct cells) have been directly observed in modular/colonial organisms (e.g. corals, sponges, ascidians); whereas in unitary deuterostosmes (including mammals) they have only been detected indirectly through molecular analysis. Here, we document for the first time the step-by-step development of whole-body chimaeras in the holothuroid Cucumaria frondosa, a unitary deuterostome belonging to the phylum Echinodermata. To the best of our knowledge, this is the most derived unitary metazoan in which direct investigation of zygote fusibility has been undertaken. Fusion occurred among hatched blastulae, never during earlier (unhatched) or later (larval) stages. The fully fused chimaeric propagules were two to five times larger than non-chimaeric embryos. Fusion was positively correlated with propagule density and facilitated by the natural tendency of early embryos to agglomerate. The discovery of natural chimaerism in a unitary deuterostome that possesses large externally fertilized eggs provides a framework to explore key aspects of evolutionary biology, histocompatibility and cell transplantation in biomedical research.


Asunto(s)
Quimera/embriología , Pepinos de Mar/embriología , Animales
18.
Dev Growth Differ ; 60(2): 97-111, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29392712

RESUMEN

The origin of coronary endothelial cells (ECs) has been investigated in avian species, and the results showed that the coronary ECs originate from the proepicardial organ (PEO) and developing epicardium. Genetic approaches in mouse models showed that the major source of coronary ECs is the sinus venosus endothelium or ventricular endocardium. To clarify and reconcile the differences between avian and mouse species, we examined the source of coronary ECs in avian embryonic hearts. Using an enhanced green fluorescent protein-Tol2 system and fluorescent dye labeling, four types of quail-chick chimeras were made and quail-specific endothelial marker (QH1) immunohistochemistry was performed. The developing PEO consisted of at least two cellular populations in origin, one was sinus venosus endothelium-derived inner cells and the other was surface mesothelium-derived cells. The majority of ECs in the coronary stems, ventricular free wall, and dorsal ventricular septum originated from the sinus venosus endothelium. The ventricular endocardium contributed mainly to the septal artery and a few cells to the coronary stems. Surface mesothelial cells of the PEO differentiated mainly into a smooth muscle phenotype, but a few differentiated into ECs. In avian species, the coronary endothelium had a heterogeneous origin in a region-specific manner, and the sources of ECs were basically the same as those observed in mice.


Asunto(s)
Vasos Coronarios/embriología , Células Endoteliales/citología , Endotelio Vascular/embriología , Células Epiteliales/citología , Corazón/embriología , Animales , Diferenciación Celular , Embrión de Pollo , Pollos , Quimera/embriología , Endotelio Vascular/citología , Células Epiteliales/fisiología , Epitelio/fisiología , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica , Miocardio/citología , Técnicas de Cultivo de Órganos , Pericardio/citología , Pericardio/embriología , Codorniz/embriología
19.
Nature ; 487(7405): 57-63, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22722858

RESUMEN

Embryonic stem (ES) cells are derived from blastocyst-stage embryos and are thought to be functionally equivalent to the inner cell mass, which lacks the ability to produce all extraembryonic tissues. Here we identify a rare transient cell population within mouse ES and induced pluripotent stem (iPS) cell cultures that expresses high levels of transcripts found in two-cell (2C) embryos in which the blastomeres are totipotent. We genetically tagged these 2C-like ES cells and show that they lack the inner cell mass pluripotency proteins Oct4 (also known as Pou5f1), Sox2 and Nanog, and have acquired the ability to contribute to both embryonic and extraembryonic tissues. We show that nearly all ES cells cycle in and out of this privileged state, which is partially controlled by histone-modifying enzymes. Transcriptome sequencing and bioinformatic analyses showed that many 2C transcripts are initiated from long terminal repeats derived from endogenous retroviruses, suggesting this foreign sequence has helped to drive cell-fate regulation in placental mammals.


Asunto(s)
Desdiferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Retrovirus Endógenos/genética , Células Madre Pluripotentes/citología , Células Madre Totipotentes/citología , Células Madre Totipotentes/metabolismo , Animales , Desdiferenciación Celular/fisiología , Linaje de la Célula/genética , Quimera/embriología , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/virología , Células Madre Embrionarias/virología , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros/genética , Histonas/química , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/química , Lisina/metabolismo , Metilación , Ratones , Fenotipo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/virología , Secuencias Repetidas Terminales/genética , Células Madre Totipotentes/virología , Transcriptoma/genética
20.
Nature ; 490(7420): 407-11, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23023130

RESUMEN

Haploids and double haploids are important resources for studying recessive traits and have large impacts on crop breeding, but natural haploids are rare in animals. Mammalian haploids are restricted to germline cells and are occasionally found in tumours with massive chromosome loss. Recent success in establishing haploid embryonic stem (ES) cells in medaka fish and mice raised the possibility of using engineered mammalian haploid cells in genetic studies. However, the availability and functional characterization of mammalian haploid ES cells are still limited. Here we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into an enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ layers in vitro and in vivo, and contribute to germlines of chimaeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte-injection procedure can also produce viable transgenic mice from genetically engineered ahES cells. Our findings show the developmental pluripotency of androgenentic haploids and provide a new tool to quickly produce genetic models for recessive traits. They may also shed new light on assisted reproduction.


Asunto(s)
Andrógenos/metabolismo , Células Madre Embrionarias/fisiología , Haploidia , Ratones Transgénicos/crecimiento & desarrollo , Animales , Biomarcadores/metabolismo , Blastocisto/citología , Línea Celular , Núcleo Celular , Quimera/embriología , Quimera/genética , Células Madre Embrionarias/citología , Epigénesis Genética , Femenino , Masculino , Ratones , Ratones Transgénicos/embriología , Ratones Transgénicos/genética , Modelos Animales , Modelos Genéticos , Oocitos/citología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/metabolismo , Espermatozoides/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA