Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(5): 920-932.e7, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245456

RESUMEN

IDO1 oxidizes tryptophan (TRP) to generate kynurenine (KYN), the substrate for 1-carbon and NAD metabolism, and is implicated in pro-cancer pathophysiology and infection biology. However, the mechanistic relationships between IDO1 in amino acid depletion versus product generation have remained a longstanding mystery. We found an unrecognized link between IDO1 and cell survival mediated by KYN that serves as the source for molecules that inhibit ferroptotic cell death. We show that this effect requires KYN export from IDO1-expressing cells, which is then available for non-IDO1-expressing cells via SLC7A11, the central transporter involved in ferroptosis suppression. Whether inside the "producer" IDO1+ cell or the "receiver" cell, KYN is converted into downstream metabolites, suppressing ferroptosis by ROS scavenging and activating an NRF2-dependent, AHR-independent cell-protective pathway, including SLC7A11, propagating anti-ferroptotic signaling. IDO1, therefore, controls a multi-pronged protection pathway from ferroptotic cell death, underscoring the need to re-evaluate the use of IDO1 inhibitors in cancer treatment.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Quinurenina , Neoplasias , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Quinurenina/farmacología , Neoplasias/metabolismo , Transducción de Señal , Triptófano/metabolismo
2.
J Immunol ; 212(6): 941-950, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294261

RESUMEN

Tolerogenic dendritic cells are promising for restoring immune homeostasis and may be an alternative therapy for autoimmune diseases such as rheumatoid arthritis. The kynurenine pathway is a vital mechanism that induces tolerance in dendritic cells (DCs). Tryptophan 2,3-dioxygenase (TDO2) is an important rate-limiting enzyme in the kynurenine pathway and participates in immune regulation. However, the role of TDO2 in shaping the tolerogenic phenotypes of DCs remains unclear. In this study, we investigated the effects and mechanisms of TDO2-overexpressed DCs in regulating the T cell balance both in vivo and in vitro. TDO2-overexpressed DC2.4 and TDO2-/- mouse bone marrow-derived DCs (BMDCs) were generated to verify the role of TDO2 in DC maturation and functionality. TDO2 overexpression in BMDCs via PGE2 treatment exhibited an immature phenotype and tolerogenic state, whereas TDO2-/- BMDCs exhibited a mature phenotype and a proinflammatory state. Furthermore, transplant of TDO2-overexpressed BMDCs alleviated collagen-induced arthritis severity in mice, which was correlated with a reduction in Th17 populations and an increase in regulatory T cells. Collectively, these results indicate that TDO2 plays an important role in the tolerogenic phenotype and may be a promising target for the generation tolerogenic DCs for rheumatoid arthritis treatment.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Ratones , Linfocitos T Reguladores , Triptófano Oxigenasa/metabolismo , Triptófano Oxigenasa/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Células Dendríticas , Tolerancia Inmunológica , Artritis Reumatoide/metabolismo
3.
Int J Neuropsychopharmacol ; 27(10)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39297528

RESUMEN

BACKGROUND: Understanding the precise mechanisms of ketamine is crucial for replicating its rapid antidepressant effects without inducing psychomimetic changes. Here, we explore whether the antidepressant-like effects of ketamine enantiomers are underscored by protection against cytokine-induced reductions in hippocampal neurogenesis and activation of the neurotoxic kynurenine pathway in our well-established in vitro model of depression in a dish. METHODS: We used the fetal hippocampal progenitor cell line (HPC0A07/03C) to investigate ketamine's impact on cytokine-induced reductions in neurogenesis in vitro. Cells were treated with interleukin- 1beta (IL-1b) (10 ng/mL) or IL-6 (50 pg/mL), alone or in combination with ketamine enantiomers arketamine (R-ketamine, 400 nM) or esketamine (S-ketamine, 400 nM) or antidepressants sertraline (1 mM) or venlafaxine (1 mM). RESULTS: Resembling the effect of antidepressants, both ketamine enantiomers prevented IL-1b- and IL-6-induced reduction in neurogenesis and increase in apoptosis. This was mediated by inhibition of IL-1b-induced production of IL-2 and IL-13 by R-ketamine and of IL-1b-induced tumor necrosis factor-alpha by S-ketamine. Likewise, R-ketamine inhibited IL-6-induced production of IL-13, whereas S-ketamine inhibited IL-6-induced IL-1b and IL-8. Moreover, both R- and S-ketamine prevented IL-1b-induced increases in indoleamine 2,3-dioxygenase expression as well as kynurenine production, which in turn was shown to mediate the detrimental effects of IL-1b on neurogenesis and apoptosis. In contrast, neither R- nor S-ketamine prevented IL-6-induced kynurenine pathway activation. CONCLUSIONS: Results suggest that R- and S-ketamine have pro-neurogenic and anti-inflammatory properties; however, this is mediated by inhibition of the kynurenine pathway only in the context of IL-1b. Overall, this study enhances our understanding of the mechanisms underlying ketamine's antidepressant effects in the context of different inflammatory phenotypes, ultimately leading to the development of more effective, personalized therapeutic approaches for patients suffering from depression.


Asunto(s)
Antidepresivos , Hipocampo , Ketamina , Quinurenina , Neurogénesis , Ketamina/farmacología , Quinurenina/farmacología , Quinurenina/metabolismo , Neurogénesis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Antidepresivos/farmacología , Interleucina-1beta/metabolismo , Línea Celular , Interleucina-6/metabolismo , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Clorhidrato de Venlafaxina/farmacología , Sertralina/farmacología , Estereoisomerismo
4.
Nature ; 563(7732): 564-568, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405245

RESUMEN

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Biopterinas/análogos & derivados , Neoplasias/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Administración Oral , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/patología , Biopterinas/biosíntesis , Biopterinas/metabolismo , Biopterinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Coenzimas/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Humanos , Hipersensibilidad/inmunología , Hierro/metabolismo , Quinurenina/metabolismo , Quinurenina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
5.
BMC Vet Res ; 20(1): 390, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227948

RESUMEN

BACKGROUND: This study aimed to identify the roles of L-tryptophan (Trp) and its rate-limiting enzymes on the receptivity of bovine endometrial epithelial cells. Real-time PCR was conducted to analyze the differential expression of genes between different groups of bovine endometrial epithelial cells. Western blot was performed to detect Cyclooxygenase-2 (COX2) expression after treatment with Trp or kynurenine (the main metabolites of Trp). The kynurenine assay was used to examine if Trp or prostaglandin E2 (PGE2) can increase the production of kynurenine in the bovine endometrial epithelial cells. RESULTS: Trp significantly stimulates insulin growth factor binding protein 1 (IGFBP1) expression, a common endometrial marker of conceptus elongation and uterus receptivity for ruminants. When bovine endometrial epithelial cells are treated with Trp, tryptophan hydroxylase-1 remains unchanged, but tryptophan 2,3-dioxygenase 2 (TDO2) is significantly increased, suggesting tryptophan is mainly metabolized through the kynurenine pathway. Kynurenine significantly stimulates IGFBP1 expression. Furthermore, Trp and kynurenine significantly increase the expression of aryl hydrocarbon receptor (AHR). CH223191, an AHR inhibitor, abrogates the induction of Trp and kynurenine on IGFBP1. PGE2 significantly induces the expression of TDO2, AHR, and IGFBP1. CONCLUSIONS: The regulation between Trp / kynurenine and PGE2 may be crucial for the receptivity of the bovine uterus.


Asunto(s)
Endometrio , Células Epiteliales , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Quinurenina , Receptores de Hidrocarburo de Aril , Triptófano Oxigenasa , Triptófano , Animales , Bovinos , Femenino , Triptófano/farmacología , Triptófano/metabolismo , Endometrio/metabolismo , Endometrio/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Quinurenina/metabolismo , Quinurenina/farmacología , Triptófano Oxigenasa/metabolismo , Triptófano Oxigenasa/genética , Dinoprostona/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética
6.
Cell Biochem Funct ; 42(4): e4065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807444

RESUMEN

Cancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement. Kynurenine metabolites which include l-kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid have been shown to inhibit T-cell proliferation resulting in a decrease in cell growth of natural killer cells and T cells. Furthermore, metabolites such as  l-kynurenine have been shown to inhibit proliferation of melanoma cells in vitro. Considering these metabolite properties, the present study aimed to explore the in vitro effects of  l-kynurenine, quinolinic acid and kynurenic acid on endothelioma sEnd-2 cells and on endothelial (EA. hy926 cells) (control cell line). The in vitro effect at 24, 48, and 72 h exposure to a range of 1-4 mM of the respective kynurenine metabolites on the two cell lines in terms of cell morphology, cell cycle progression and induction of apoptosis was assessed. The half inhibitory concentration (IC50), as determined using nonlinear regression, for  l-kynurenine, quinolinic acid and kynurenic acid was 9.17, 15.56, and 535.40 mM, respectively. Optical transmitted light differential interference contrast and hematoxylin and eosin staining revealed cells blocked in metaphase, formation of apoptotic bodies and compromised cell density in  l-kynurenine-treated cells. A statistically significant increase in the number of cells present in the sub-G1 phase was observed in  l-kynurenine-treated sample. To our knowledge, this was the first in vitro study conducted to investigate the mechanism of action of kynurenine metabolites on endothelioma sEnd-2 cells. It can be concluded that  l-kynurenine exerts an antiproliferative effect on the endothelioma sEnd-2 cell line by decreasing cell growth and proliferation as well as a metaphase block. These hallmarks suggest cell death via apoptosis. Further research will be conducted on  l-kynurenine to assess the effect on cell adhesion in vitro and in vivo as cell-cell adhesion has been shown to increase metastasis to distant organs therefore, the inhibition of adhesion may lead to a decrease in metastasis.


Asunto(s)
Apoptosis , Proliferación Celular , Quinurenina , Ácido Quinolínico , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/análogos & derivados , Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácido Quinolínico/farmacología , Ácido Quinolínico/metabolismo , Ácido Quinurénico/farmacología , Ácido Quinurénico/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Relación Dosis-Respuesta a Droga
7.
J Cell Mol Med ; 27(16): 2290-2307, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37482908

RESUMEN

Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor ß1-induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression-induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.


Asunto(s)
Insuficiencia Cardíaca , Quinurenina 3-Monooxigenasa , Ratones , Ratas , Animales , Isoproterenol/toxicidad , Quinurenina 3-Monooxigenasa/genética , Quinurenina 3-Monooxigenasa/metabolismo , Quinurenina 3-Monooxigenasa/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/uso terapéutico , Ratones Endogámicos C57BL , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Miocitos Cardíacos/metabolismo
9.
Biogerontology ; 24(2): 257-273, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36626036

RESUMEN

This study aimed to determine the effects of mitotherapy on learning and memory and hippocampal kynurenine (Kyn) pathway, mitochondria function, and dendritic arborization and spines density in aged rats subjected to chronic mild stress. Twenty-eight male Wistar rats (22 months old( were randomly divided into Aged, Aged + Mit, Aged + Stress, and Aged + Stress + Mit groups. Aged rats in the stress groups were subjected to different stressors for 28 days. The Aged + Mit and Aged + stress + Mit groups were treated with intracerebroventricular injection (10 µl) of fresh mitochondria harvested from the young rats' brains, and other groups received 10 µl mitochondria storage buffer. Spatial and episodic-like memories were assessed via the Barnes maze and novel object recognition tests. Indoleamine 2,3-dioxygenase (IDO) expression and activity, Kyn, Tryptophan (TRY), ATP levels, and mitochondrial membrane potential (MMP) were measured in the hippocampus region. Golgi-Cox staining was also performed to assess the dendritic branching pattern and dendritic spines in the hippocampal CA1 subfield. The results showed that mitotherapy markedly improved both spatial and episodic memories in the Aged + Stress + Mit group compared to the Aged + Stress. Moreover, mitotherapy decreased IDO protein expression and activity and Kyn levels, while it increased ATP levels and improved MMP in the hippocampus of the Aged + Stress + Mit group. Besides, mitotherapy restored dendritic atrophy and loss of spine density in the hippocampal neurons of the stress-exposed aged rats. These findings provide evidence for the therapeutic effect of mitotherapy against stress-induced cognitive deterioration in aged rats by improving hippocampal mitochondrial function and modulation of the Kyn pathway.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Ratas , Masculino , Animales , Ratas Wistar , Hipocampo/metabolismo , Triptófano/metabolismo , Triptófano/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Adenosina Trifosfato/metabolismo
10.
Can J Physiol Pharmacol ; 101(11): 599-609, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459654

RESUMEN

As a common aggressive head and neck cancer, nasopharyngeal carcinoma (NPC) received cisplatin treatment as a first-line chemotherapy. Platinum-induced resistance is a major limitation of current treatment strategy in the advanced NPC. Increased indoleamine 2,3-dioxygenase (IDO1) activities are found in cisplatin-resistant NPC cells versus cisplatin-sensitive NPC cells. As an IDO1 immunosuppressant, NLG-919 has entered clinical phase I to treat advanced solid tumors. To reverse cisplatin resistance, we investigated the combinatory application of cisplatin and NLG-919 in NPC treatment. In vitro biological studies on cisplatin-resistant and cisplatin-sensitive NPC cells were taken to imply that the combination of NLG-919 and cisplatin got a stronger impact on the induction of cell apoptosis and the inhibition of cell migration, exploring superior effect of antitumor over single drug. We proved that the mechanism of the combined therapy could inhibit the activity of IDO1, blocking amino acid tryptophan conversion to kynurenine through the kynurenine pathway, which further inhibited the aryl hydrocarbon receptor expression. Our study underscored the combination of cisplatin and NLG-919 as a potent therapeutic way for the reversal of cisplatin resistance.


Asunto(s)
Cisplatino , Neoplasias Nasofaríngeas , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma Nasofaríngeo/tratamiento farmacológico , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/uso terapéutico , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/uso terapéutico , Transducción de Señal , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/patología , Movimiento Celular , Línea Celular Tumoral
11.
Proc Natl Acad Sci U S A ; 117(26): 15322-15331, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541049

RESUMEN

Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Células Vegetales/fisiología , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/antagonistas & inhibidores , Quinurenina/farmacología , Rayos Láser , Ftalimidas/farmacología , Células Vegetales/efectos de los fármacos , Regeneración/efectos de los fármacos , Regeneración/fisiología , Transducción de Señal/fisiología , Triazoles/farmacología
12.
Gut ; 71(4): 734-745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34006584

RESUMEN

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Panax , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Muerte Celular , Microbioma Gastrointestinal/fisiología , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Quinurenina/farmacología , Ligandos , Neoplasias Pulmonares/terapia , Ratones , Panax/metabolismo , Polisacáridos/farmacología , Triptófano/farmacología
13.
Circulation ; 143(6): 566-580, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33272024

RESUMEN

BACKGROUND: Ischemic cardiovascular diseases, particularly acute myocardial infarction (MI), is one of the leading causes of mortality worldwide. Indoleamine 2, 3-dioxygenase 1 (IDO) catalyzes 1 rate-limiting step of L-tryptophan metabolism, and emerges as an important regulator of many pathological conditions. We hypothesized that IDO could play a key role to locally regulate cardiac homeostasis after MI. METHODS: Cardiac repair was analyzed in mice harboring specific endothelial or smooth muscle cells or cardiomyocyte or myeloid cell deficiency of IDO and challenged with acute myocardial infarction. RESULTS: We show that kynurenine generation through IDO is markedly induced after MI in mice. Total genetic deletion or pharmacological inhibition of IDO limits cardiac injury and cardiac dysfunction after MI. Distinct loss of function of IDO in smooth muscle cells, inflammatory cells, or cardiomyocytes does not affect cardiac function and remodeling in infarcted mice. In sharp contrast, mice harboring endothelial cell-specific deletion of IDO show an improvement of cardiac function as well as cardiomyocyte contractility and reduction in adverse ventricular remodeling. In vivo kynurenine supplementation in IDO-deficient mice abrogates the protective effects of IDO deletion. Kynurenine precipitates cardiomyocyte apoptosis through reactive oxygen species production in an aryl hydrocarbon receptor-dependent mechanism. CONCLUSIONS: These data suggest that IDO could constitute a new therapeutic target during acute MI.


Asunto(s)
Células Endoteliales/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/uso terapéutico , Quinurenina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Animales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Quinurenina/farmacología , Ratones , Infarto del Miocardio/fisiopatología
14.
Glia ; 70(3): 558-571, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862988

RESUMEN

Despite its decades' long therapeutic use in psychiatry, the biological mechanisms underlying lithium's mood-stabilizing effects have remained largely elusive. Here, we investigated the effect of lithium on tryptophan breakdown via the kynurenine pathway using immortalized human microglia cells, primary human microglia isolated from surgical specimens, and microglia-like cells differentiated from human induced pluripotent stem cells. Interferon (IFN)-γ, but not lipopolysaccharide, was able to activate immortalized human microglia, inducing a robust increase in indoleamine-2,3-dioxygenase (IDO1) mRNA transcription, IDO1 protein expression, and activity. Further, chromatin immunoprecipitation verified enriched binding of both STAT1 and STAT3 to the IDO1 promoter. Lithium counteracted these effects, increasing inhibitory GSK3ßS9 phosphorylation and reducing STAT1S727 and STAT3Y705 phosphorylation levels in IFN-γ treated cells. Studies in primary human microglia and hiPSC-derived microglia confirmed the anti-inflammatory effects of lithium, highlighting that IDO activity is reduced by GSK3 inhibitor SB-216763 and STAT inhibitor nifuroxazide via downregulation of P-STAT1S727 and P-STAT3Y705 . Primary human microglia differed from immortalized human microglia and hiPSC derived microglia-like cells in their strong sensitivity to LPS, resulting in robust upregulation of IDO1 and anti-inflammatory cytokine IL-10. While lithium again decreased IDO1 activity in primary cells, it further increased release of IL-10 in response to LPS. Taken together, our study demonstrates that lithium inhibits the inflammatory kynurenine pathway in the microglia compartment of the human brain.


Asunto(s)
Células Madre Pluripotentes Inducidas , Quinurenina , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/farmacología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/metabolismo , Quinurenina/metabolismo , Quinurenina/farmacología , Litio/metabolismo , Litio/farmacología , Microglía/metabolismo , Triptófano/metabolismo , Triptófano/farmacología
15.
Cell Physiol Biochem ; 56(S1): 24-35, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263537

RESUMEN

BACKGROUND/AIMS: Colitis is a main presentation of inflammatory bowel disease (IBD) and yet, has no definitive cure. Currently, corticosteroids, anti-tumor necrosis factor (anti-TNF) agents and 5-aminosalicylic acid derivatives are prescribed for management of colitis. Except their failure rate, they are not always tolerated because of their severe adverse effects. Additive formulas with fewer adverse effects may improve the treatment of colitis. METHODS: In this study, colitis was induced with intra-rectal injection of three concentrations of acetic acid (4, 6 and 8 v/v). Each group received sodium selenite (0.5 mg/kg) or saline, gavaged on days 0 and 1 for treatment. Two days after induction of colitis, rats were sacrificed and the end part of their colons were resected for macroscopic and microscopic evaluation and molecular measurement. RESULTS: Sodium selenite improved macroscopic and microscopic view of the colon, decreased cryptitis, crypt abscess and inflammatory cells infiltration and partly maintained mucosal structure. Sodium selenite markedly reduced tissue levels of malondialdehyde (MDA), TNF-α and interferon γ (INF-γ) and decreased myeloperoxidase (MPO) activity. Treatment with sodium selenite also significantly downregulated IL17, IL22, indoleamine 2,3-dioxygenase (IDO1), and kynurenine levels. Western blotting revealed that sodium selenite prevented apoptosis by increasing bcl2/Bax ratio. Furthermore, our findings showed that sodium selenite significantly downregulated the upstream inflammatory molecules such as nuclear factor kappa B (NF-κB) and toll-like receptor 4 (TLR4) in colitis. CONCLUSION: These findings show that sodium selenite alleviates inflammatory response and oxidative stress and protects against colitis.


Asunto(s)
Colitis , FN-kappa B , Ácido Acético/toxicidad , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/uso terapéutico , FN-kappa B/metabolismo , Ratas , Transducción de Señal , Selenito de Sodio/metabolismo , Selenito de Sodio/farmacología , Selenito de Sodio/uso terapéutico , Receptor Toll-Like 4/metabolismo , Inhibidores del Factor de Necrosis Tumoral
16.
Anal Biochem ; 645: 114605, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35181297

RESUMEN

Kynurenine (Kyn) is involved in a variety of physiological/pathological reactions via activating aryl hydrocarbon receptor (Ahr). However, how to activate Ahr by Kyn under physiological/pathological conditions is still unclear. Here, we presented that Kyn (8 µM, a concentration less than the dose of Kyn-induced Ahr activation) significantly induced the nuclear transfer of Ahr and the expression of cytochrome P450 1A1 (CYP1A1, a classic biomarker for Ahr activation) when co-administered with ultraviolet (UV) irradiation in 95D cells, which were transfected transiently with siRNA against indoleamine 2,3-dioxygenase 1 (IDO 1) and cultured in cell medium supplemented with bovine serum containing bovine serum albumin (BSA), in vitro. Additionally, we found that the fluorescence intensity of BSA was attenuated by Kyn (2, 4, 6, 8, 10, 12 and 14 µM) mainly through quenching the fluorescence of tryptophan (Trp) residues in the pattern of dynamic quenching related to molecular diffusion. More important, resonance energy transfer from excited-state BSA to Kyn was confirmed, leading to the generation "energetic" Kyn that might be ability of hyperactivity according to the theory of photochemical reaction. These data indicate that UV irradiation is contributable for Kyn to function, and present a novel pattern of altering the activity of biomolecules to some degree.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Transferencia de Energía , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Quinurenina/farmacología , Triptófano/metabolismo
17.
Exp Physiol ; 107(9): 1029-1036, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35912981

RESUMEN

NEW FINDINGS: What is the central question in this study? Promoting muscle health with regular aerobic exercise can improve mental health through a kynurenine metabolic pathway: do conditions of muscle disease such as muscular dystrophy negatively influence this pathway? What is the main finding and its importance? The DBA/2J mdx model of Duchenne muscular dystrophy exhibits altered kynurenine metabolism with less kynurenic acid and peroxisome proliferator-activated receptor-γ coactivator 1-α and higher levels of tumour necrosis factor α mRNA - results associated with anxiety-like behaviour. ABSTRACT: Regular exercise can direct muscle kynurenine (KYN) metabolism toward the neuroprotective branch of the kynurenine pathway thereby limiting the accumulation of neurotoxic metabolites in the brain and contributing to mental resilience. However, the effect of muscle disease on KYN metabolism has not yet been investigated. Previous work has highlighted anxiety-like behaviours in approximately 25% of patients with Duchenne muscular dystrophy (DMD), possibly due to altered KYN metabolism. Here, we characterized KYN metabolism in mdx mouse models of DMD. Young (8-10 week old) DBA/2J (D2) mdx mice, but not age-matched C57BL/10 (C57) mdx mice, had lower levels of circulating kynurenic acid (KYNA) and lower KYNA:KYN ratio compared with their respective wild-type (WT) controls. While both C57 and D2 mdx mice displayed signs of anxiety-like behaviour, spending more time in the corners of the arena during a novel object recognition test, this effect was more prominent in D2 mdx mice. Correlational analysis detected a significant negative association between KYNA:KYN levels and time spent in corners in D2 mice, but not C57 mice. In extensor digitorum longus muscles from D2 mdx mice, but not C57 mdx mice, we found lowered protein levels of peroxisome proliferator-activated receptor-γ coactivator 1-α and kynurenine amino transferase-1 enzyme when compared with WT. Furthermore, D2 mdx quadriceps muscles had the highest level of tumour necrosis factor α expression, which is suggestive of enhanced inflammation. Thus, our pilot work shows that KYN metabolism is altered in D2 mdx mice, with a potential contribution from altered muscle health.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ácido Quinurénico/metabolismo , Ácido Quinurénico/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Cell Biol Int ; 46(10): 1577-1587, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35702760

RESUMEN

The current studies associated with tumor biology continue to describe a high correlation between tryptophan (Trp) metabolism and tumor progression. These findings reflect the complex underlying mechanism of tumor development and highlight the need to explore additional drug targets for carcinoma-associated diseases. In our study, we reported that elevated Trp metabolism was observed in highly malignant glioma tumor tissues from patients. The elevated Trp metabolism in glioma cells were induced by the overexpression of Trp 2,3-dioxygenase 2 (TDO2), which further contributed to the production of the metabolite kynurenine (Kyn). Subsequently, the Kyn derived from Trp metabolism was able to mediate the activation of the aryl hydrocarbon receptor (AhR) and downstream PI3K/AKT signals, resulting in the strengthening of tumor stemness and growth. Meanwhile, the activation of the AhR could promote the process of epithelial-mesenchymal transition in gliomas through a TGF-ß-dependent mechanism, leading to enhanced tumor invasion in vitro and in vivo. Inhibition of the AhR using StemRegenin 1 was demonstrated to suppress glioma growth and improve the outcome of traditional chemotherapy in subcutaneous tumor-bearing mice, representing a promising therapeutic target for clinical glioma treatment.


Asunto(s)
Dioxigenasas , Glioma , Animales , Dioxigenasas/metabolismo , Glioma/metabolismo , Quinurenina/metabolismo , Quinurenina/farmacología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Triptófano/metabolismo , Triptófano Oxigenasa/metabolismo
19.
Mol Biol Rep ; 49(9): 8337-8347, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690960

RESUMEN

BACKGROUND: The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood. METHODS AND RESULTS: The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10. CONCLUSION: Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.


Asunto(s)
Terapia de Inmunosupresión , Indolamina-Pirrol 2,3,-Dioxigenasa , Interferón gamma , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Receptor Toll-Like 3 , Animales , Proliferación Celular , Células Cultivadas , Perros , Terapia de Inmunosupresión/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Ratones , ARN Mensajero/metabolismo , Receptor Toll-Like 3/metabolismo
20.
Biol Pharm Bull ; 45(4): 522-527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370278

RESUMEN

The accumulation of uremic toxins is known to be one of the causes of cardiovascular disorder related to renal disease. Among the many uremic toxins, we focused on kynurenine (kyn), whose levels have been shown to be positively correlated with vascular endothelial dysfunction markers, and directly evaluated the influence of kyn on the rat thoracic aorta. Exposure of the endothelium-intact aorta to kyn markedly attenuated the acetylcholine (ACh)-induced relaxation and significantly increased superoxide anion (O2·-) production. These effects were ameliorated by pretreatment with ascorbic acid, an antioxidant, and CH223191, an aryl hydrocarbon receptor (AhR) inhibitor, but not by apocynin, a reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor. In the endothelium-denuded aorta, kyn significantly attenuated the nitric oxide (NO) donor sodium nitroprusside (SNP)-induced vasorelaxation and increased the O2·- production. Ascorbic acid treatment significantly ameliorated these effects, whereas CH223191 and apocynin treatments did not. Kyn had no influence on the vasorelaxant response to BAY 41-2272, a soluble guanylate cyclase stimulator. This suggested that kyn attenuates the NO-mediated vasorelaxation response by promoting O2·- production in thoracic aorta to inactivate NO. O2·- production is likely stimulated in both vascular endothelium and smooth muscle, the former of which may be mediated by AhR activation.


Asunto(s)
Quinurenina , Superóxidos , Animales , Aorta Torácica , Endotelio Vascular , Quinurenina/farmacología , Ratas , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA