Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(4): 1001-1013.e7, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881299

RESUMEN

RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.


Asunto(s)
Inestabilidad Genómica , Reparación del ADN por Recombinación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ADN/metabolismo , Daño del ADN , Expresión Génica , ARN/metabolismo , ARN Polimerasa II/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Schizosaccharomyces/enzimología
2.
Mol Cell ; 83(20): 3707-3719.e5, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37827159

RESUMEN

R-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids. Now, we show that the RNase DICER also resolves R-loops. Biochemical analysis reveals that DICER acts by specifically cleaving the RNA within R-loops. Importantly, a DICER RNase mutant impaired in R-loop processing causes a strong accumulation of R-loops in cells. Our results thus not only reveal a function of DICER as an R-loop resolvase independent of DROSHA but also provide evidence for the role of multi-functional RNA processing factors in the maintenance of genome integrity in higher eukaryotes.


Asunto(s)
Estructuras R-Loop , Ribonucleasas , Humanos , Estructuras R-Loop/genética , Ribonucleasas/genética , ARN/genética , ADN , Replicación del ADN , ADN Helicasas/genética , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Inestabilidad Genómica
3.
Mol Cell ; 77(5): 932-933, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142690

RESUMEN

While gapmers efficiently knock down as well as terminate transcription of nascent lncRNAs and mRNAs, Lee and Mendell (2020) and Lai et al. (2020) also demonstrate that Pol II termination is not observed with gapmers targeting the 3' terminal portions of the transcript.


Asunto(s)
Oligonucleótidos Antisentido , ARN Largo no Codificante , ARN Mensajero , Ribonucleasa H/genética , Transcripción Genética
4.
Mol Cell ; 77(5): 1032-1043.e4, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31924447

RESUMEN

An attractive approach to reduce gene expression is via the use of antisense oligonucleotides (ASOs) that harness the RNase H1 mechanism. Here we show that RNase H ASOs targeted to introns or exons robustly reduce the level of spliced RNA associated with chromatin. Surprisingly, intron-targeted ASOs reduce the level of pre-mRNA associated with chromatin to a greater extent than exon-targeted ASOs. This indicates that exon-targeted ASOs achieve full activity after the pre-mRNA has undergone splicing, but before the mRNA is released from chromatin. Even though RNase H ASOs can reduce the level of RNA associated with chromatin, the effect of ASO-directed RNA degradation on transcription has never been documented. Here we show that intron-targeted ASOs and, to a lesser extent, exon-targeted ASOs cause RNA polymerase II (Pol II) transcription termination in cultured cells and mice. Furthermore, ASO-directed transcription termination is mediated by the nuclear exonuclease XRN2.


Asunto(s)
Cromatina/metabolismo , Oligonucleótidos Antisentido/metabolismo , Precursores del ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribonucleasa H/metabolismo , Terminación de la Transcripción Genética , Animales , Cromatina/genética , Exones , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Femenino , Células HCT116 , Humanos , Intrones , Ratones Endogámicos C57BL , Modelos Genéticos , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Oligonucleótidos Antisentido/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , Ribonucleasa H/genética , Factores de Tiempo
5.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615088

RESUMEN

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Asunto(s)
Adenosina/análogos & derivados , Neoplasias de Cabeza y Cuello/genética , Metiltransferasas/genética , Proteínas del Tejido Nervioso/genética , Factores de Empalme de ARN/genética , Reparación del ADN por Recombinación/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Adenosina/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bleomicina/farmacología , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Células HEK293 , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Humanos , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas del Tejido Nervioso/metabolismo , Hibridación de Ácido Nucleico , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
6.
EMBO J ; 42(23): e113104, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855233

RESUMEN

R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.


Asunto(s)
Replicación del ADN , ARN , Humanos , ARN/genética , Ribonucleasas/genética , ADN/metabolismo , Hidroxiurea/farmacología , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
7.
Cell ; 149(5): 1008-22, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22579044

RESUMEN

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Asunto(s)
Replicación del ADN , Embrión de Mamíferos/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Animales , Inestabilidad Cromosómica , ADN Polimerasa Dirigida por ADN/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Mol Cell ; 76(1): 44-56.e3, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31444105

RESUMEN

Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn2+ that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN , ADN Bacteriano/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Evolución Molecular , Inosina/metabolismo , ARN/metabolismo , Ribonucleasa H/metabolismo , Animales , Proteínas Argonautas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , ADN Bacteriano/química , ADN Bacteriano/genética , Desoxirribonucleasa (Dímero de Pirimidina)/química , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Humanos , Magnesio/metabolismo , Manganeso/metabolismo , Ratones , Conformación de Ácido Nucleico , Conformación Proteica , ARN/química , ARN/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Proc Natl Acad Sci U S A ; 121(3): e2312029121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194446

RESUMEN

Understanding natural protein evolution and designing novel proteins are motivating interest in development of high-throughput methods to explore large sequence spaces. In this work, we demonstrate the application of multisite λ dynamics (MSλD), a rigorous free energy simulation method, and chemical denaturation experiments to quantify evolutionary selection pressure from sequence-stability relationships and to address questions of design. This study examines a mesophilic phylogenetic clade of ribonuclease H (RNase H), furthering its extensive characterization in earlier studies, focusing on E. coli RNase H (ecRNH) and a more stable consensus sequence (AncCcons) differing at 15 positions. The stabilities of 32,768 chimeras between these two sequences were computed using the MSλD framework. The most stable and least stable chimeras were predicted and tested along with several other sequences, revealing a designed chimera with approximately the same stability increase as AncCcons, but requiring only half the mutations. Comparing the computed stabilities with experiment for 12 sequences reveals a Pearson correlation of 0.86 and root mean squared error of 1.18 kcal/mol, an unprecedented level of accuracy well beyond less rigorous computational design methods. We then quantified selection pressure using a simple evolutionary model in which sequences are selected according to the Boltzmann factor of their stability. Selection temperatures from 110 to 168 K are estimated in three ways by comparing experimental and computational results to evolutionary models. These estimates indicate selection pressure is high, which has implications for evolutionary dynamics and for the accuracy required for design, and suggests accurate high-throughput computational methods like MSλD may enable more effective protein design.


Asunto(s)
Escherichia coli , Ribonucleasa H , Escherichia coli/genética , Filogenia , Simulación por Computador , Secuencia de Consenso , Ribonucleasa H/genética
10.
RNA ; 30(6): 728-738, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38485192

RESUMEN

Transcriptomics analyses play pivotal roles in understanding the complex regulatory networks that govern cellular processes. The abundance of rRNAs, which account for 80%-90% of total RNA in eukaryotes, limits the detection and investigation of other transcripts. While mRNAs and long noncoding RNAs have poly(A) tails that are often used for positive selection, investigations of poly(A)- RNAs, such as circular RNAs, histone mRNAs, and small RNAs, typically require the removal of the abundant rRNAs for enrichment. Current approaches to deplete rRNAs for downstream molecular biology investigations are hampered by restrictive RNA input masses and high costs. To address these challenges, we developed rRNA Removal by RNaseH (rRRR), a method to efficiently deplete rRNAs from a wide range of human, mouse, and rat RNA inputs and of varying qualities at a cost 10- to 20-fold cheaper than other approaches. We used probe-based hybridization and enzymatic digestion to selectively target and remove rRNA molecules while preserving the integrity of non-rRNA transcripts. Comparison of rRRR to two commercially available approaches showed similar rRNA depletion efficiencies and comparable off-target effects. Our developed method provides researchers with a valuable tool for investigating gene expression and regulatory mechanisms across a wide range of biological systems at an affordable price that increases the accessibility for researchers to enter the field, ultimately advancing our understanding of cellular processes.


Asunto(s)
ARN Ribosómico , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Animales , Humanos , Ratones , Ratas , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Nucleic Acids Res ; 52(9): 5121-5137, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520409

RESUMEN

The S-phase checkpoint is involved in coupling DNA unwinding with nascent strand synthesis and is critical to maintain replication fork stability in conditions of replicative stress. However, its role in the specific regulation of leading and lagging strands at stalled forks is unclear. By conditionally depleting RNaseH2 and analyzing polymerase usage genome-wide, we examine the enzymology of DNA replication during a single S-phase in the presence of replicative stress and show that there is a differential regulation of lagging and leading strands. In checkpoint proficient cells, lagging strand replication is down-regulated through an Elg1-dependent mechanism. Nevertheless, when checkpoint function is impaired we observe a defect specifically at the leading strand, which was partially dependent on Exo1 activity. Further, our genome-wide mapping of DNA single-strand breaks reveals that strand discontinuities highly accumulate at the leading strand in HU-treated cells, whose dynamics are affected by checkpoint function and Exo1 activity. Our data reveal an unexpected role of Exo1 at the leading strand and support a model of fork stabilization through prevention of unrestrained Exo1-dependent resection of leading strand-associated nicks after fork stalling.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , Exodesoxirribonucleasas , Puntos de Control de la Fase S del Ciclo Celular , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , Fase S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
12.
Nucleic Acids Res ; 52(7): 3623-3635, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38281203

RESUMEN

Certain DNA sequences can adopt a non-B form in the genome that interfere with DNA-templated processes, including transcription. Among the sequences that are intrinsically difficult to transcribe are those that tend to form R-loops, three-stranded nucleic acid structures formed by a DNA-RNA hybrid and the displaced ssDNA. Here we compared the transcription of an endogenous gene with and without an R-loop-forming sequence inserted. We show that, in agreement with previous in vivo and in vitro analyses, transcription elongation is delayed by R-loops in yeast. Importantly, we demonstrate that the Rat1 transcription terminator factor facilitates transcription throughout such structures by inducing premature termination of arrested RNAPIIs. We propose that RNase H degrades the RNA moiety of the hybrid, providing an entry site for Rat1. Thus, we have uncovered an unanticipated function of Rat1 as a transcription restoring factor opening up the possibility that it may also promote transcription through other genomic DNA structures intrinsically difficult to transcribe. If R-loop-mediated transcriptional stress is not relieved by Rat1, it will cause genomic instability, probably through the increase of transcription-replication conflicts, a deleterious situation that could lead to cancer.


Asunto(s)
Exorribonucleasas , Estructuras R-Loop , Ribonucleasa H , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminación de la Transcripción Genética , Estructuras R-Loop/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , Saccharomyces cerevisiae/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética
13.
RNA ; 29(11): 1691-1702, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37536954

RESUMEN

Double-stranded RNA (dsRNA) has aroused widespread interest due to its effects on immunity and applications based on RNAi. However, the in vitro preparation of dsRNA is costly and laborious. In this study, we have developed a novel and interesting method designated as pfRCT (promoter-free rolling-circle transcription) for direct, facile, and efficient dsRNA preparation. This method generates equal amounts of sense and antisense strands simultaneously from a single circular dsDNA template. To initiate transcription by T7 RNA polymerase without directional preference, a 9-15-bp bubble (mismatched duplex with strong sequence symmetry) is introduced into the template. During RCT, all the necessary reagents, including the template, NTPs, RNA polymerase, RNase H, and Helpers, are present in one pot; and the just-transcribed RNA is immediately truncated by RNase H to monomers with the desired size. The ends of the dsRNA product can also be simply sealed by T4 RNA ligase 1 after pfRCT. This new approach is expected to promote the applications of dsRNA.


Asunto(s)
ARN Bicatenario , Ribonucleasa H , Ribonucleasa H/genética , Interferencia de ARN , ARN Bicatenario/genética , Transcripción Genética
14.
Mol Cell ; 65(5): 832-847.e4, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257700

RESUMEN

R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here we show that replication protein A (RPA), an ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability.


Asunto(s)
ADN/metabolismo , Inestabilidad Genómica , ARN/metabolismo , Proteína de Replicación A/metabolismo , Ribonucleasa H/metabolismo , Transcripción Genética , Sitios de Unión , ADN/química , ADN/genética , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Interferencia de ARN , Proteína de Replicación A/química , Proteína de Replicación A/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Relación Estructura-Actividad , Factores de Tiempo , Transfección
15.
RNA ; 28(8): 1144-1155, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35680168

RESUMEN

Advances in mRNA synthesis and lipid nanoparticles technologies have helped make mRNA therapeutics and vaccines a reality. The 5' cap structure is a crucial modification required to functionalize synthetic mRNA for efficient protein translation in vivo and evasion of cellular innate immune responses. The extent of 5' cap incorporation is one of the critical quality attributes in mRNA manufacturing. RNA cap analysis involves multiple steps: generation of predefined short fragments from the 5' end of the kilobase-long synthetic mRNA molecules using RNase H, a ribozyme or a DNAzyme, enrichment of the 5' cleavage products, and LC-MS intact mass analysis. In this paper, we describe (1) a framework to design site-specific RNA cleavage using RNase H; (2) a method to fluorescently label the RNase H cleavage fragments for more accessible readout methods such as gel electrophoresis or high-throughput capillary electrophoresis; (3) a simplified method for post-RNase H purification using desthiobiotinylated oligonucleotides and streptavidin magnetic beads followed by elution using water. By providing a design framework for RNase H-based RNA 5' cap analysis using less resource-intensive analytical methods, we hope to make RNA cap analysis more accessible to the scientific community.


Asunto(s)
Liposomas , Ribonucleasa H , Nanopartículas , Caperuzas de ARN/genética , ARN Mensajero/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
16.
J Virol ; 97(9): e0053523, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37668369

RESUMEN

The genomes of mammals contain fingerprints of past infections by ancient retroviruses that invaded the germline of their ancestors. Most of these endogenous retroviruses (ERVs) contain only remnants of the original retrovirus; however, on rare occasions, ERV genes can be co-opted for a beneficial host function. While most studies of co-opted ERVs have focused on envelope genes, including the syncytins that function in placentation, there are examples of co-opted gag genes including one we recently discovered in simian primates. Here, we searched for other intact gag genes in non-primate mammalian lineages. We began by examining the genomes of extant camel species, which represent a basal lineage in the order Artiodactyla. This identified a gagpol gene with a large open reading frame (ORF) (>3,500 bp) in the same orthologous location in Artiodactyla species but that is absent in other mammals. Thus, this ERV was fixed in the common ancestor of all Artiodactyla at least 64 million years ago. The amino acid sequence of this gene, termed ARTgagpol, contains recognizable matrix, capsid, nucleocapsid, and reverse transcriptase domains in ruminants, with an RNase H domain in camels and pigs. Phylogenetic analysis and structural prediction of its reverse transcriptase and RNase H domains groups ARTgagpol with gammaretroviruses. Transcriptomic analysis shows ARTgagpol expression in multiple tissues suggestive of a co-opted host function. These findings identify the oldest and largest ERV-derived gagpol gene with an intact ORF in mammals, an intriguing milestone in the co-evolution of mammals and retroviruses. IMPORTANCE Retroviruses are unique among viruses that infect animals as they integrate their reverse-transcribed double-stranded DNA into host chromosomes. When this happens in a germline cell, such as sperm, egg, or their precursors, the integrated retroviral copies can be passed on to the next generation as endogenous retroviruses (ERVs). On rare occasions, the genes of these ERVs can be domesticated by the host. In this study we used computational similarity searches to identify an ancient ERV with an intact viral gagpol gene in the genomes of camels that is also found in the same genomic location in other even-toed ungulates suggesting that it is at least 64 million years old. Broad tissue expression and predicted preservation of the reverse transcriptase fold of this protein suggest that it may be domesticated for a host function. This is the oldest known intact gagpol gene of an ancient retrovirus in mammals.


Asunto(s)
Artiodáctilos , Retrovirus Endógenos , Animales , Camelus , Retrovirus Endógenos/genética , Evolución Molecular , Filogenia , Ribonucleasa H/genética , ADN Polimerasa Dirigida por ARN/genética , Porcinos , Artiodáctilos/genética
17.
Mol Genet Metab ; 142(1): 108346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368708

RESUMEN

OBJECTIVE: Aicardi Goutières Syndrome (AGS) is a genetic interferonopathy associated with multisystemic heterogeneous disease and neurologic dysfunction. AGS includes a broad phenotypic spectrum which is only partially explained by genotype. To better characterize this variability, we will perform a systematic analysis of phenotypic variability in familial cases of AGS. METHODS: Among thirteen families, twenty-six siblings diagnosed with AGS were identified from the Myelin Disorders and Biorepository Project (MDBP) at the Children's Hospital of Philadelphia. Data were collected on the age of onset, genotype, neurologic impairment, and systemic complications. Neurologic impairment was assessed by a disease-specific scale (AGS Severity Scale) at the last available clinical encounter (range: 0-11 representing severe - attenuated phenotypes). The concordance of clinical severity within sibling pairs was categorized based on the difference in AGS Scale (discordant defined as >2-unit difference). The severity classifications were compared between sibling sets and by genotype. RESULTS: Five genotypes were represented: TREX1 (n = 4 subjects), RNASEH2B (n = 8), SAMHD1 (n = 8) ADAR1 (n = 4), and IFIH1 (n = 2). The older sibling was diagnosed later relative to the younger affected sibling (median age 7.32 years [IQR = 14.1] compared to 1.54 years [IQR = 10.3]). Common presenting neurologic symptoms were tone abnormalities (n = 10/26) and gross motor dysfunction (n = 9/26). Common early systemic complications included dysphagia and chilblains. The overall cohort median AGS severity score at the last encounter was 8, while subjects presenting with symptoms before one year had a median score of 5. The TREX1 cohort presented at the youngest age and with the most severe phenotype on average. AGS scores were discordant for 5 of 13 sibling pairs, most commonly in the SAMHD1 pairs. Microcephaly, feeding tube placement, seizures and earlier onset sibling were associated with lower AGS scores (respectively, Wilcoxon rank sum: p = 0.0001, p < 0.0001, p = 0.0426, and Wilcoxon signed rank: p = 0.0239). CONCLUSIONS: In this systematic analysis of phenotypic variability in familial cases, we found discordance between siblings affected by AGS. Our results underscore the heterogeneity of AGS and suggest factors beyond AGS genotype may affect phenotype. Understanding the critical variables associated with disease onset and severity can guide future therapeutic interventions and clinical monitoring. This report reinforces the need for further studies to uncover potential factors to better understand this phenotypic variability, and consequently identify potential targets for interventions in attempt to change the natural history of the disease.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Exodesoxirribonucleasas , Estudios de Asociación Genética , Genotipo , Malformaciones del Sistema Nervioso , Fenotipo , Hermanos , Humanos , Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/complicaciones , Femenino , Masculino , Preescolar , Niño , Lactante , Exodesoxirribonucleasas/genética , Fosfoproteínas/genética , Ribonucleasa H/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , Adolescente , Proteínas de Unión al GTP Monoméricas/genética , Helicasa Inducida por Interferón IFIH1/genética , Mutación , Proteínas de Unión al ARN/genética , Edad de Inicio , Índice de Severidad de la Enfermedad
18.
Nature ; 559(7713): 285-289, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973717

RESUMEN

The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Edición Génica , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ribonucleótidos/genética , Animales , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Línea Celular , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Femenino , Genes BRCA1 , Genoma/genética , Células HeLa , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Mol Cell ; 61(3): 393-404, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833086

RESUMEN

Long non-coding (lnc)RNAs, once thought to merely represent noise from imprecise transcription initiation, have now emerged as major regulatory entities in all eukaryotes. In contrast to the rapidly expanding identification of individual lncRNAs, mechanistic characterization has lagged behind. Here we provide evidence that the GAL lncRNAs in the budding yeast S. cerevisiae promote transcriptional induction in trans by formation of lncRNA-DNA hybrids or R-loops. The evolutionarily conserved RNA helicase Dbp2 regulates formation of these R-loops as genomic deletion or nuclear depletion results in accumulation of these structures across the GAL cluster gene promoters and coding regions. Enhanced transcriptional induction is manifested by lncRNA-dependent displacement of the Cyc8 co-repressor and subsequent gene looping, suggesting that these lncRNAs promote induction by altering chromatin architecture. Moreover, the GAL lncRNAs confer a competitive fitness advantage to yeast cells because expression of these non-coding molecules correlates with faster adaptation in response to an environmental switch.


Asunto(s)
ADN de Hongos/metabolismo , Metabolismo Energético , ARN de Hongos/metabolismo , ARN Largo no Codificante/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Activación Transcripcional , Adaptación Fisiológica , Ensamble y Desensamble de Cromatina , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Metabolismo Energético/genética , Galactosa/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Familia de Multigenes , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
20.
Nucleic Acids Res ; 50(15): 8749-8766, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35947649

RESUMEN

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.


Asunto(s)
ADN Mitocondrial , Ribonucleasa H , Ratones , Animales , ADN Mitocondrial/química , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , ARN/química , Replicación del ADN/genética , Mitocondrias/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA