Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Microbiol ; 95(5): 885-901, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25524563

RESUMEN

In trypanosomes, mRNAs are processed by spliced leader (SL) trans splicing, in which a capped SL, derived from SL RNA, is spliced onto the 5' end of each mRNA. This process is mediated by the spliceosome, a large and dynamic RNA-protein machinery consisting of small nuclear ribonucleoproteins (snRNPs) and non-snRNP proteins. Due to early evolutionary divergence, the amino acid sequences of trypanosome splicing factors exhibit limited similarity to those of their eukaryotic orthologs making their bioinformatic identification challenging. Most of the ~ 60 protein components that have been characterized thus far are snRNP proteins because, in contrast to individual snRNPs, purification of intact spliceosomes has not been achieved yet. Here, we characterize the non-snRNP PRP19 complex of Trypanosoma brucei. We identified a complex that contained the core subunits PRP19, CDC5, PRL1, and SPF27, as well as PRP17, SKIP and PPIL1. Three of these proteins were newly annotated. The PRP19 complex was associated primarily with the activated spliceosome and, accordingly, SPF27 silencing blocked the first splicing step. Interestingly, SPF27 silencing caused an accumulation of SL RNA with a hypomethylated cap that closely resembled the defect observed previously upon depletion of the cyclin-dependent kinase CRK9, indicating that both proteins may function in spliceosome activation.


Asunto(s)
Complejos Multiproteicos/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Empalmosomas , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Técnica del Anticuerpo Fluorescente , Espectrometría de Masas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/química , Empalme del ARN , ARN Protozoario/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Alineación de Secuencia , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
2.
Proteomics ; 13(9): 1417-22, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23456960

RESUMEN

Simple protein separation by 1DE is a widely used method to reduce sample complexity and to prepare proteins for mass spectrometric identification via in-gel digestion. While several automated solutions are available for in-gel digestion particularly of small cylindric gel plugs derived from 2D gels, the processing of larger 1D gel-derived gel bands with liquid handling work stations is less well established in the field. Here, we introduce a digestion device tailored to this purpose and validate its performance in comparison to manual in-gel digestion. For relative quantification purposes, we extend the in-gel digestion procedure by iTRAQ labeling of the tryptic peptides and show that automation of the entire workflow results in robust quantification of proteins from samples of different complexity and dynamic range. We conclude that automation improves accuracy and reproducibility of our iTRAQ workflow as it minimizes the variability in both, digestion and labeling efficiency, the two major causes of irreproducible results in chemical labeling approaches.


Asunto(s)
Electroforesis/instrumentación , Electroforesis/métodos , Proteínas/análisis , Automatización , Bicarbonatos/química , Diseño de Equipo , Células HeLa , Humanos , Ovalbúmina/análisis , Ovalbúmina/aislamiento & purificación , Proteínas/aislamiento & purificación , Reproducibilidad de los Resultados , Ribonucleoproteínas Nucleares Pequeñas/análisis , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/aislamiento & purificación , Espectrometría de Masas en Tándem , Flujo de Trabajo
3.
Nucleic Acids Res ; 39(15): 6715-28, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21558325

RESUMEN

Small nuclear and nucleolar RNAs that program pre-mRNA splicing and rRNA processing have a signature 5'-trimethylguanosine (TMG) cap. Whereas the mechanism of TMG synthesis by Tgs1 methyltransferase has been elucidated, we know little about whether or how RNP biogenesis, structure and function are perturbed when TMG caps are missing. Here, we analyzed RNPs isolated by tandem-affinity purification from TGS1 and tgs1Δ yeast strains. The protein and U-RNA contents of total SmB-containing RNPs were similar. Finer analysis revealed stoichiometric association of the nuclear cap-binding protein (CBP) subunits Sto1 and Cbc2 with otherwise intact Mud1- and Nam8-containing U1 snRNPs from tgs1Δ cells. CBP was not comparably enriched in Lea1-containing U2 snRNPs from tgs1Δ cells. Moreover, CBP was not associated with mature Nop58-containing C/D snoRNPs or mature Cbf5- and Gar1-containing H/ACA snoRNPs from tgs1Δ cells. The protein composition and association of C/D snoRNPs with the small subunit (SSU) processosome were not grossly affected by absence of TMG caps, nor was the composition of H/ACA snoRNPs. The cold-sensitive (cs) growth defect of tgs1Δ yeast cells could be suppressed by mutating the cap-binding pocket of Cbc2, suggesting that ectopic CBP binding to the exposed U1 m(7)G cap in tgs1Δ cells (not lack of TMG caps per se) underlies the cs phenotype.


Asunto(s)
Metiltransferasas/genética , Complejo Proteico Nuclear de Unión a la Caperuza/análisis , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Saccharomyces cerevisiae/genética , Autoantígenos/aislamiento & purificación , Frío , Eliminación de Gen , Complejo Proteico Nuclear de Unión a la Caperuza/química , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/aislamiento & purificación , Fenotipo , Caperuzas de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Supresión Genética
4.
J Cell Biol ; 135(2): 303-14, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8896590

RESUMEN

Posttranscriptional steps in the production of mRNA include well characterized polyadenylation and splicing reactions, but it is also necessary to understand how RNA is transported within the nucleus from the site of its transcription to the nuclear pore, where it is translocated to the cytoplasmic compartment. Determining the localization of RNA within the nucleus is an important aspect of understanding RNA production and may provide clues for investigating the trafficking of RNA within the nucleus and the mechanism for its export to the cytoplasm. We have previously shown that late phase adenovirus-infected cells contain large clusters of snRNP and non-snRNP splicing factors; the presence of these structures is correlated with high levels of viral late gene transcription. The snRNP clusters correspond to enlarged interchromatin granules present in late phase infected cells. Here we show that polyadenylated RNA and spliced tripartite leader exons from the viral major late transcription unit are present in these same late phase snRNP-containing structures. We find that the majority of the steady state viral RNA present in the nucleus is spliced at the tripartite leader exons. Tripartite leader exons are efficiently exported from the nucleus at a time when we detect their accumulation in interchromatin granule clusters. Since the enlarged interchromatin granules contain spliced and polyadenylated RNA, we suggest that viral RNA may accumulate in this late phase structure during an intranuclear step in RNA transport.


Asunto(s)
Núcleo Celular/metabolismo , Exones , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN Viral/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Secuencia de Bases , Núcleo Celular/ultraestructura , Cartilla de ADN , Células HeLa , Humanos , Datos de Secuencia Molecular , Sondas de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN Viral/biosíntesis , ARN Viral/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Uridina/metabolismo
5.
J Cell Biol ; 148(2): 239-47, 2000 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-10648556

RESUMEN

The eukaryotic initiation factor 4E (eIF4E) plays a pivotal role in the control of protein synthesis. eIF4E binds to the mRNA 5' cap structure, m(7)GpppN (where N is any nucleotide) and promotes ribosome binding to the mRNA. It was previously shown that a fraction of eIF4E localizes to the nucleus (Lejbkowicz, F., C. Goyer, A. Darveau, S. Neron, R. Lemieux, and N. Sonenberg. 1992. Proc. Natl. Acad. Sci. USA. 89:9612-9616). Here, we show that the nuclear eIF4E is present throughout the nucleoplasm, but is concentrated in speckled regions. Double label immunofluorescence confocal microscopy shows that eIF4E colocalizes with Sm and U1snRNP. We also demonstrate that eIF4E is specifically released from the speckles by the cap analogue m(7)GpppG in a cell permeabilization assay. However, eIF4E is not released from the speckles by RNase A treatment, suggesting that retention of eIF4E in the speckles is not RNA-mediated. 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) treatment of cells causes the condensation of eIF4E nuclear speckles. In addition, overexpression of the dual specificity kinase, Clk/Sty, but not of the catalytically inactive form, results in the dispersion of eIF4E nuclear speckles.


Asunto(s)
Núcleo Celular/ultraestructura , Factores de Iniciación de Péptidos/aislamiento & purificación , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Autoantígenos/aislamiento & purificación , Diclororribofuranosil Benzoimidazol/farmacología , Fosfatos de Dinucleósidos/farmacología , Factor 4E Eucariótico de Iniciación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Caperuzas de ARN/metabolismo , ARN Polimerasa II/antagonistas & inhibidores , Proteínas de Unión al ARN/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Proteínas Nucleares snRNP
6.
J Cell Biol ; 126(1): 11-23, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8027171

RESUMEN

In the interphase nucleus of mammalian cells the U1, U2, U4/U6, and U5 small nuclear ribonucleoproteins (snRNPs), which are subunits of spliceosomes, associate with specific subnuclear domains including interchromatin granules and coiled bodies. Here, we analyze the association of splicing snRNPs with these structures during mitosis and reassembly of daughter nuclei. At the onset of mitosis snRNPs are predominantly diffuse in the cytoplasm, although a subset remain associated with remnants of coiled bodies and clusters of mitotic interchromatin granules, respectively. The number and size of mitotic coiled bodies remain approximately unchanged from metaphase to early telophase while snRNP-containing clusters of mitotic interchromatin granules increase in size and number as cells progress from anaphase to telophase. During telophase snRNPs are transported into daughter nuclei while the clusters of mitotic interchromatin granules remain in the cytoplasm. The timing of nuclear import of splicing snRNPs closely correlates with the onset of transcriptional activity in daughter nuclei. When transcription restarts in telophase cells snRNPs have a diffuse nucleoplasmic distribution. As cells progress to G1 snRNP-containing clusters of interchromatin granules reappear in the nucleus. Coiled bodies appear later in G1, although the coiled body antigen, p80 coilin, enters early into telophase nuclei. After inhibition of transcription we still observe nuclear import of snRNPs and the subsequent appearance of snRNP-containing clusters of interchromatin granules, but not coiled body formation. These data demonstrate that snRNP associations with coiled bodies and interchromatin granules are differentially regulated during the cell division cycle and suggest that these structures play distinct roles connected with snRNP structure, transport, and/or function.


Asunto(s)
Compartimento Celular , Núcleo Celular/fisiología , Cromatina/fisiología , Mitosis/fisiología , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transporte Biológico/efectos de los fármacos , Núcleo Celular/ultraestructura , Células Cultivadas , Cromatina/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , Dactinomicina/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Hibridación in Situ , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Empalmosomas/metabolismo , Telofase/fisiología , Transcripción Genética
7.
Science ; 284(5422): 2003-5, 1999 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-10373121

RESUMEN

In metazoans, two distinct spliceosomes catalyzing pre-messenger RNA splicing have been identified. Here, the human U11/U12 small nuclear ribonucleoprotein (snRNP), a subunit of the minor (U12-dependent) spliceosome, was isolated. Twenty U11/U12 proteins were identified, including subsets unique to the minor spliceosome or common to both spliceosomes. Common proteins include four U2 snRNP polypeptides that constitute the essential splicing factor SF3b. A 35-kilodalton U11-associated protein homologous to the U1 snRNP 70K protein was also identified. These data provide fundamental information about proteins of the minor spliceosome and shed light on its evolutionary relationship to the major spliceosome.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/análisis , Ribonucleoproteína Nuclear Pequeña U2/análisis , Ribonucleoproteínas Nucleares Pequeñas/análisis , Empalmosomas/química , Secuencia de Aminoácidos , Cromatografía de Afinidad , Evolución Molecular , Células HeLa , Humanos , Intrones , Datos de Secuencia Molecular , Peso Molecular , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación
8.
Science ; 264(5156): 261-5, 1994 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-8146658

RESUMEN

Small nuclear ribonucleoprotein (snRNP) particles are essential for pre-messenger RNA splicing. In human HeLa cells, 40 proteins associated with snRNPs have been identified. Yet, the function of many of these proteins remains unknown. Here, the immunoaffinity purification of the spliceosomal snRNPs U1, U2, U4/U6.U5, and several nucleolar snRNP species from the yeast Saccharomyces cerevisiae is presented. The U1 and U4/U6.U5 snRNPs were purified extensively and their protein composition and ultrastructure analyzed. The yeast U1 snRNP is larger and contains three times more specific proteins than its human counterpart. In contrast, the size, protein composition, and morphology of the yeast and the human U4/U6.U5 snRNPs are significantly similar. The preparative isolation of yeast snRNPs will allow the cloning as well as genetic and phylogenetic analysis of snRNP proteins which will accelerate our understanding of their function.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Saccharomyces cerevisiae/química , Empalmosomas/química , Western Blotting , Centrifugación por Gradiente de Densidad , Cromatografía de Afinidad , Células HeLa , Humanos , Microscopía Electrónica , Peso Molecular , ARN de Hongos/análisis , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/química
9.
Nucleic Acids Res ; 35(5): 1391-401, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17264129

RESUMEN

Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30-60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/fisiología , Ribonucleoproteínas Nucleares Pequeñas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Cromatografía de Afinidad , Proteómica , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Empalmosomas/química , Espectrometría de Masas en Tándem
10.
Jpn J Infect Dis ; 61(2): 95-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18362394

RESUMEN

This work reports for the first time the identification and immunolocalization, by confocal and conventional indirect immunofluorescence, of m3G epitopes present in ribonucleoproteins of the following trypanosomatids: Trypanosoma cruzi epimastigotes of three different strains, Blastocrithidia ssp., and Leishmania major promastigotes. The identity of these epitopes and hence the specificity of the anti-m3G monoclonal antibody were ascertained through competition reaction with 7-methylguanosine that blocks the Ig binding sites, abolishing the fluorescence in all the parasites tested and showing a specific perinuclear localization of the snRNPs, which suggests their nuclear reimport in the parasites. Using an immunoprecipitation technique, it was also possible to confirm the presence of the trimethylguanosine epitopes in trypanosomatids.


Asunto(s)
Anticuerpos Monoclonales , Epítopos/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Trypanosomatina/química , Animales , Anticuerpos Monoclonales/inmunología , Técnica del Anticuerpo Fluorescente Indirecta , Inmunoprecipitación , Microscopía Confocal , Ribonucleoproteínas Nucleares Pequeñas/inmunología , Trypanosomatina/genética , Trypanosomatina/inmunología , Trypanosomatina/ultraestructura
11.
Methods Enzymol ; 425: 263-82, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17673088

RESUMEN

Archaeal box C/D RNAs guide the site-specific 2'-O-methylation of target nucleotides in ribosomal RNAs and tRNAs. In vitro reconstitution of catalytically active box C/D RNPs by use of in vitro transcribed box C/D RNAs and recombinant core proteins provides model complexes for the study of box C/D RNP assembly, structure, and function. Described here are protocols for assembly of the archaeal box C/D RNP and assessment of its nucleotide modification activity. Also presented is a novel affinity purification scheme that uses differentially tagged core proteins and a sequential three-step affinity selection protocol that yields fully assembled and catalytically active box C/D RNPs. This affinity selection protocol can provide highly purified complex in sufficient quantities not only for biochemical analyses but also for biophysical approaches such as cryoelectron microscopy and X-ray crystallography.


Asunto(s)
Cromatografía de Afinidad/métodos , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Cromatografía por Intercambio Iónico/métodos , Methanococcaceae
12.
Mol Cell Biol ; 18(4): 1956-66, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9528767

RESUMEN

Sm core proteins play an essential role in the formation of small nuclear ribonucleoprotein particles (snRNPs) by binding to small nuclear RNAs and participating in a network of protein interactions. The two-hybrid system was used to identify SmE interacting proteins and to test for interactions between all pairwise combinations of yeast Sm proteins. We observed interactions between SmB and SmD3, SmE and SmF, and SmE and SmG. For these interactions, a direct biochemical assay confirmed the validity of the results obtained in vivo. To map the protein-protein interaction surface of Sm proteins, we generated a library of SmE mutants and investigated their ability to interact with SmF and/or SmG proteins in the two-hybrid system. Several classes of mutants were observed: some mutants are unable to interact with either SmF or SmG proteins, some interact with SmG but not with SmF, while others interact moderately with SmF but not with SmG. Our mutational analysis of yeast SmE protein shows that conserved hydrophobic residues are essential for interactions with SmF and SmG as well as for viability. Surprisingly, we observed that other evolutionarily conserved positions are tolerant to mutations, with substitutions affecting binding to SmF and SmG only mildly and conferring a wild-type growth phenotype.


Asunto(s)
Proteínas Fúngicas/metabolismo , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Saccharomyces cerevisiae
13.
Mol Cell Biol ; 14(7): 4662-70, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-7516470

RESUMEN

Expression of the recombinant human U1-70K protein in COS cells resulted in its rapid transport to the nucleus, even when binding to U1 RNA was debilitated. Deletion analysis of the U1-70K protein revealed the existence of two segments of the protein which were independently capable of nuclear localization. One nuclear localization signal (NLS) was mapped within the U1 RNA-binding domain and consists of two typically separated but interdependent elements. The major element of this NLS resides in structural loop 5 between the beta 4 strand and the alpha 2 helix of the folded RNA recognition motif. The C-terminal half of the U1-70K protein which was capable of nuclear entry contains two arginine-rich regions, which suggests the existence of a second NLS. Site-directed mutagenesis of the RNA recognition motif NLS demonstrated that the U1-70K protein can be transported independently of U1 RNA and that its association with the U1 small nuclear ribonucleoprotein particle can occur in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Chlorocebus aethiops , Clonación Molecular , Epítopos/análisis , Humanos , Peso Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/análisis , Mutación Puntual , Estructura Terciaria de Proteína , ARN Mensajero/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Homología de Secuencia de Aminoácido , Transfección
14.
J Mol Biol ; 246(2): 254-63, 1995 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-7869377

RESUMEN

In previous studies we have shown that specific nuclear pre-mRNAs and their splicing products, as well as the general population of nuclear poly(A)+ RNA, are found packaged in 200 S large nuclear ribonucleoprotein (lnRNP) particles that represent the splicing machinery in vivo. The lnRNP particles contain all U small nuclear ribonucleoproteins (snRNPs) required for splicing, as well as several proteins including non-snRNP splicing factors. Here we show that upon addition of EDTA to sucrose gradient-fractionated 200 S particles, part of their components (e.g. part of the U snRNPs) are no longer associated with pre-mRNAs, which are now packaged in 70 S particles. This 200 S to 70 S transition makes the pre-mRNA more susceptible to digestion by RNase. The effect of EDTA is reversible, as back addition of Mg2+ results in the reconstitution into 200 S lnRNP particles of: (1) all five snRNPs required for splicing; (2) the SR proteins; and (3) CAD mRNA, as a representative of nuclear RNA polymerase II transcripts. Remarkably, electron microscopy of the reconstituted particles shows a compact structure, 50 nm in diameter, that is indistinguishable from the original undissociated particles. We conclude that Mg2+ is required for the integrity of the 200 S lnRNP particles.


Asunto(s)
Magnesio/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Animales , Aspartato Carbamoiltransferasa/biosíntesis , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/biosíntesis , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Centrifugación por Gradiente de Densidad , Cricetinae , Dihidroorotasa/biosíntesis , Ácido Edético/farmacología , Cinética , Mesocricetus , Microscopía Electrónica , Complejos Multienzimáticos/biosíntesis , ARN Polimerasa II/metabolismo , Empalme del ARN , ARN Mensajero/biosíntesis , Ribonucleasas , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Transcripción Genética
15.
Immunobiology ; 206(5): 537-45, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12607729

RESUMEN

The C-terminal peptide SmD1(83-119) has been identified as an important autoantigen in systemic lupus erythematosus (SLE). ELISA studies have shown that roughly 70% of all sera from patients with SLE react with this peptide. Previous findings revealed that the addition of blocking agents and sample dilution buffers influences the discrimination between positive and negative anti-SmD1(83-119) sera in SLE. The aim of the present study was to identify possible cofactors in the anti-SmD1(83-119) reactivity. We therefore tested SLE sera (n=6) for anti-SmD1(83-119) reactivity by ELISA and analysed the effects of different blocking agents (1% skim milk, 1% gelatin, and 1% BSA). In our investigation, lipids were extracted from skim milk using dichlomethane, and the putative fraction was tested to assess the assay's ability to discriminate between positive and negative sera. The effects of enzymatic digestion by casein were analyzed, and different concentrations of casein were used to determine the role of this protein in the detection of anti-SmD1(83-119) antibodies by ELISA. Furthermore, rabbits were immunized with SmD1(83-119) adsorbed to casein and control proteins. One percent skim milk was the most effective blocking agent and sample dilution buffer for the discrimination between positive and negative sera. As demonstrated by SDS electrophoresis, the discriminative capacity was influenced by enzymatic digestion of skim milk proteins, but not by lipid extraction. Differences in anti-SmD1(83-119) reactivity upon variation of the casein concentration suggest that the protein plays a significant role in the detection of anti-SmD1(83-119) antibodies. However, our immunisation studies did not show any effect of casein on anti-SmD1(83-119) reactivity, suggesting that it has no immunogenic effect on the anti-SmD1(83-119) response. In conclusion, casein seems to be an important cofactor in autoantibody reactivity directed against the C-terminal SmD1(83-119) peptide and probably functions by changing the conformation of the peptide's critical epitope.


Asunto(s)
Autoanticuerpos/inmunología , Caseínas/inmunología , Lupus Eritematoso Sistémico/inmunología , Ribonucleoproteínas Nucleares Pequeñas/inmunología , Animales , Autoanticuerpos/sangre , Autoantígenos/inmunología , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Gelatina/química , Humanos , Lupus Eritematoso Sistémico/sangre , Leche/química , Conejos , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Albúmina Sérica Bovina/química , Proteínas Nucleares snRNP
16.
Tsitologiia ; 39(8): 670-6, 1997.
Artículo en Ruso | MEDLINE | ID: mdl-9490505

RESUMEN

Effect of nuclear and released into culture medium alpha RNPs (N- and R-alpha-RNPs, resp.) produced by transformed rat embryo fibroblasts of serum-free cell line LRec-1sf on the nonsensibilized mouse splenocyte cytotoxicity (NK-mediated cell lysis) was studied. A preliminary treatment with N-alpha-RNPs resulted in decreasing K562 cell sensitivity to splenocyte cytotoxicity, whereas pretreatment of the splenocytes themselves exerted no cytotoxic effect. The target cell preincubation with R-alpha-RNPs had no influence on K562 cell resistance to NK cell cytotoxicity. The identical splenocyte preincubation was without action on their cytotoxic effect to LRec-1sf cells, however, resulted in an increase of the K562 cell lysis. The addition of R-alpha-RNPs into splenocyte/target cell mixtures had no influence on NK-mediated lysis, when K562 cells were used as a target cell line, but suppressed the NK-mediated lysis of LRec-1sf cells. The results of the present experiments suggest that alpha RNPs produced by LRec-1sf cell line exhibit the capacity for modulating both mouse NK cytotoxicity, and the transformed cell sensitivity to NK-mediated lysis.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Línea Celular Transformada/inmunología , Ribonucleoproteínas Nucleares Pequeñas/farmacología , Adyuvantes Inmunológicos/aislamiento & purificación , Animales , Carcinoma de Células Escamosas , Línea Celular , Células Cultivadas , Medios de Cultivo Condicionados , Citotoxicidad Inmunológica/efectos de los fármacos , Embrión de Mamíferos , Fibroblastos/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos CBA , Ratas , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología , Células Tumorales Cultivadas
17.
Tsitologiia ; 36(2): 174-81, 1994.
Artículo en Ruso | MEDLINE | ID: mdl-7809966

RESUMEN

Specific small ribonucleoprotein (alpha-RNP) complexes have been identified and characterized in the human epidermal carcinoma A-431 cells. The alpha-RNP complexes contain Alu-homologous small RNA, along with other small antisense RNA species. The epidermal growth factor (EGF) has been shown to induce selective specific changes in the expression of the small alpha-RNAs, the expression of the Alu-like RNA being repressed. Specific changes in the protein composition of the alpha-RNP complexes have been detected under the influence of EGF.


Asunto(s)
Carcinoma de Células Escamosas/genética , Factor de Crecimiento Epidérmico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ARN Nuclear Pequeño/efectos de los fármacos , Ribonucleoproteínas Nucleares Pequeñas/efectos de los fármacos , ADN de Neoplasias/genética , Electroforesis en Gel de Poliacrilamida , Humanos , Hibridación de Ácido Nucleico , ARN Neoplásico/genética , ARN Nuclear Pequeño/análisis , ARN Nuclear Pequeño/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/análisis , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Células Tumorales Cultivadas
20.
Nat Struct Mol Biol ; 16(12): 1237-43, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19935684

RESUMEN

The spliceosome is a ribonucleoprotein machine that removes introns from pre-mRNA in a two-step reaction. To investigate the catalytic steps of splicing, we established an in vitro splicing complementation system. Spliceosomes stalled before step 1 of this process were purified to near-homogeneity from a temperature-sensitive mutant of the RNA helicase Prp2, compositionally defined, and shown to catalyze efficient step 1 when supplemented with recombinant Prp2, Spp2 and Cwc25, thereby demonstrating that Cwc25 has a previously unknown role in promoting step 1. Step 2 catalysis additionally required Prp16, Slu7, Prp18 and Prp22. Our data further suggest that Prp2 facilitates catalytic activation by remodeling the spliceosome, including destabilizing the SF3a and SF3b proteins, likely exposing the branch site before step 1. Remodeling by Prp2 was confirmed by negative stain EM and image processing. This system allows future mechanistic analyses of spliceosome activation and catalysis.


Asunto(s)
ARN de Hongos/aislamiento & purificación , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/aislamiento & purificación , ARN Helicasas DEAD-box/metabolismo , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica/métodos , Modelos Biológicos , ARN Helicasas/aislamiento & purificación , ARN Helicasas/metabolismo , Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA