Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 196(2): 916-930, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140314

RESUMEN

Castor (Ricinus communis L.) is an importance crop cultivated for its oil and economic value. Seed size is a crucial factor that determines crop yield. Gaining insight into the molecular regulatory processes of seed development is essential for the genetic enhancement and molecular breeding of castor. Here, we successfully fine-mapped a major QTL related to seed size, qSS3, to a 180 kb interval on chromosome 03 using F2 populations (DL01×WH11). A 17.6-kb structural variation (SV) was detected through genomic comparison between DL01 and WH11. Analysis of haplotypes showed that the existence of the complete 17.6 kb structural variant may lead to the small seed characteristic in castor. In addition, we found that qSS3 contains the microRNA396b (miR396b) sequence, which is situated within the 17.6 kb SV. The results of our experiment offer additional evidence that miR396-Growth Regulating Factor 4 (GRF4) controls seed size by impacting the growth and multiplication of seed coat and endosperm cells. Furthermore, we found that RcGRF4 activates the expression of YUCCA6 (YUC6), facilitating the production of IAA in seeds and thereby impacting the growth of castor seeds. Our research has discovered a crucial functional module that controls seed size, offering a fresh understanding of the mechanism underlying seed size regulation in castor.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , MicroARNs , Semillas , MicroARNs/genética , MicroARNs/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Ácidos Indolacéticos/metabolismo , Sitios de Carácter Cuantitativo/genética , Ricinus communis/genética , Ricinus communis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ricinus/genética , Ricinus/metabolismo , Ricinus/crecimiento & desarrollo , ARN de Planta/genética , ARN de Planta/metabolismo
2.
Plant Physiol ; 192(2): 1028-1045, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36883668

RESUMEN

Castor (Ricinus communis L.) is a dicotyledonous oilseed crop that can have either spineless or spiny capsules. Spines are protuberant structures that differ from thorns or prickles. The developmental regulatory mechanisms governing spine formation in castor or other plants have remained largely unknown. Herein, using map-based cloning in 2 independent F2 populations, F2-LYY5/DL01 and F2-LYY9/DL01, we identified the RcMYB106 (myb domain protein 106) transcription factor as a key regulator of capsule spine development in castor. Haplotype analyses demonstrated that either a 4,353-bp deletion in the promoter or a single nucleotide polymorphism leading to a premature stop codon in the RcMYB106 gene could cause the spineless capsule phenotype in castor. Results of our experiments indicated that RcMYB106 might target the downstream gene RcWIN1 (WAX INDUCER1), which encodes an ethylene response factor known to be involved in trichome formation in Arabidopsis (Arabidopsis thaliana) to control capsule spine development in castor. This hypothesis, however, remains to be further tested. Nevertheless, our study reveals a potential molecular regulatory mechanism underlying the spine capsule trait in a nonmodel plant species.


Asunto(s)
Aceite de Ricino , Ricinus communis , Aceite de Ricino/metabolismo , Ricinus/genética , Ricinus/metabolismo , Regulación de la Expresión Génica de las Plantas , Ricinus communis/genética , Ricinus communis/metabolismo
3.
J Exp Bot ; 75(13): 3993-4004, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38634646

RESUMEN

Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate is directly proportional to leaf area. This leaf area must provide carbon to the volume of the metabolically active sapwood (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. ⅔ or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work indicates that the notion that sapwood increases per unit leaf area with height growth requires revision.


Asunto(s)
Biomasa , Hojas de la Planta , Árboles , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Ricinus/crecimiento & desarrollo , Ricinus/metabolismo , Madera/crecimiento & desarrollo , Madera/metabolismo
4.
World J Microbiol Biotechnol ; 40(8): 241, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38866993

RESUMEN

Due to the rapid expansion of industrial activity, soil pollution has intensified. Plants growing in these polluted areas have developed a rhizobiome uniquely and specially adapted to thrive in such environments. However, it remains uncertain whether pollution acts as a sufficiently selective force to shape the rhizobiome, and whether these adaptations endure over time, potentially aiding in long-term phytoremediation. Therefore, in the present study, we aimed to compare whether the microbiome associated with roots from plants germinated in polluted riverbanks will improve the phytoremediation of Cd and Pb under mesocosm experiments compared with plants germinating in a greenhouse. The experimental design was a factorial 2 × 2, i.e., the origin of the plant and the presence or absence of 100 mg/L of Cd and 1000 mg/L of Pb. Our results showed that plants germinated in polluted riverbanks have the capacity to accumulate twice the amount of Pb and Cd during mesocosm experiments. The metagenomic analysis showed that plants from the river exposed to heavy metals at the end of mesocosm experiments were rich in Rhizobium sp. AC44/96 and Enterobacter sp. EA-1, Enterobacter soli, Pantoea rwandensis, Pantoea endophytica. In addition, those plants were uniquely associated with Rhizobium grahamii, which likely contributed to the differences in the levels of phytoremediation achieved. Furthermore, the functional analysis revealed an augmented functional potential related to hormones, metallothioneins, dismutases, and reductases; meanwhile, the plants germinated in the greenhouse showed an unspecific strategy to exceed heavy metal stress. In conclusion, pollution pressure drives stable microbial assemblages, which could be used in future phytostabilization and phytoremediation experiments.


Asunto(s)
Biodegradación Ambiental , Cadmio , Metales Pesados , Microbiota , Raíces de Plantas , Ricinus , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Cadmio/metabolismo , Ricinus/microbiología , Ricinus/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Plomo/metabolismo , Microbiología del Suelo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Metagenómica , Ríos/microbiología
5.
Plant Cell Physiol ; 63(5): 683-698, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35246690

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme that plays a crucial anaplerotic role in central plant metabolism. Bacterial-type PEPC (BTPC) of developing castor oil seeds (COS) is highly expressed as a catalytic and regulatory subunit of a novel Class-2 PEPC heteromeric complex. Ricinus communis Ca2+-dependent protein kinase-1 (RcCDPK1) catalyzes in vivo inhibitory phosphorylation of COS BTPC at Ser451. Autokinase activity of recombinant RcCDPK1 was detected and 42 autophosphorylated Ser, Thr or Tyr residues were mapped via liquid chromatography-tandem mass spectrometry. Prior autophosphorylation markedly attenuated the ability of RcCDPK1 to transphosphorylate its BTPC substrate at Ser451. However, fully dephosphorylated RcCDPK1 rapidly autophosphorylated during the initial stages of a BTPC transphosphorylation assay. This suggests that Ca2+-dependent binding of dephospho-RcCDPK1 to BTPC may trigger a structural change that leads to rapid autophosphorylation and subsequent substrate transphosphorylation. Tyr30 was identified as an autophosphorylation site via LC-MS/MS and immunoblotting with a phosphosite-specific antibody. Tyr30 occurs at the junction of RcCDPK1's N-terminal variable (NTVD) and catalytic domains and is widely conserved in plant and protist CDPKs. Interestingly, a reduced rate and extent of BTPC transphosphorylation occurred with a RcCDPK1Y30F mutant. Prior research demonstrated that RcCDPK1's NTVD is essential for its Ca2+-dependent autophosphorylation or BTPC transphosphorylation activities but plays no role in target recognition. We propose that Tyr30 autophosphorylation facilitates a Ca2+-dependent interaction between the NTVD and Ca2+-activation domain that primes RcCDPK1 for transphosphorylating BTPC at Ser451. Our results provide insights into links between the post-translational control of COS anaplerosis, Ca2+-dependent signaling and the biological significance of RcCDPK1 autophosphorylation.


Asunto(s)
Fosfoenolpiruvato Carboxilasa , Ricinus communis , Bacterias/metabolismo , Calcio/metabolismo , Ricinus communis/metabolismo , Aceite de Ricino/metabolismo , Cromatografía Liquida , Fosfoenolpiruvato Carboxilasa/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Ricinus/metabolismo , Semillas/metabolismo , Espectrometría de Masas en Tándem
6.
J Exp Bot ; 73(9): 3030-3043, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560190

RESUMEN

Triacylglycerols (TAGs) are the major component of plant storage lipids such as oils. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step of the Kennedy pathway, and is mainly responsible for plant oil accumulation. We previously found that the activity of Vernonia DGAT1 was distinctively higher than that of Arabidopsis and soybean DGAT1 in a yeast microsome assay. In this study, the DGAT1 cDNAs of Arabidopsis, Vernonia, soybean, and castor bean were introduced into Arabidopsis. All Vernonia DGAT1-expressing lines showed a significantly higher oil content (49% mean increase compared with the wild-type) followed by soybean and castor bean. Most Arabidopsis DGAT1-overexpressing lines did not show a significant increase. In addition to these four DGAT1 genes, sunflower, Jatropha, and sesame DGAT1 genes were introduced into a TAG biosynthesis-defective yeast mutant. In the yeast expression culture, DGAT1s from Arabidopsis, castor bean, and soybean only slightly increased the TAG content; however, DGAT1s from Vernonia, sunflower, Jatropha, and sesame increased TAG content >10-fold more than the former three DGAT1s. Three amino acid residues were characteristically common in the latter four DGAT1s. Using soybean DGAT1, these amino acid substitutions were created by site-directed mutagenesis and substantially increased the TAG content.


Asunto(s)
Arabidopsis , Diacilglicerol O-Acetiltransferasa , Aceites de Plantas , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Diglicéridos , Ricinus/genética , Ricinus/metabolismo , Saccharomyces cerevisiae , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Triglicéridos/metabolismo
7.
Molecules ; 27(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35956949

RESUMEN

The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide's physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a−4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil−water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 µΜ, 13.98 µΜ, and 17.63 µΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 µΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.


Asunto(s)
Fabaceae , Plaguicidas , Aminoácidos/química , Fabaceae/metabolismo , Glicina/farmacología , Plaguicidas/análisis , Fenazinas , Floema/química , Ricinus/metabolismo
8.
Plant Physiol ; 182(2): 730-738, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806737

RESUMEN

In previous work, we identified a triple mutant of the castor (Ricinus communis) stearoyl-Acyl Carrier Protein desaturase (T117R/G188L/D280K) that, in addition to introducing a double bond into stearate to produce oleate, performed an additional round of oxidation to convert oleate to a trans allylic alcohol acid. To determine the contributions of each mutation, in this work we generated individual castor desaturase mutants carrying residue changes corresponding to those in the triple mutant and investigated their catalytic activities. We observed that T117R, and to a lesser extent D280K, accumulated a novel product, namely erythro-9,10-dihydroxystearate, that we identified via its methyl ester through gas chromatography-mass spectrometry and comparison with authentic standards. The use of 18O2 labeling showed that the oxygens of both hydroxyl moieties originate from molecular oxygen rather than water. Incubation with an equimolar mixture of 18O2 and 16O2 demonstrated that both hydroxyl oxygens originate from a single molecule of O2, proving the product is the result of dioxygenase catalysis. Using prolonged incubation, we discovered that wild-type castor desaturase is also capable of forming erythro-9,10-dihydroxystearate, which presents a likely explanation for its accumulation to ∼0.7% in castor oil, the biosynthetic origin of which had remained enigmatic for decades. In summary, the findings presented here expand the documented constellation of di-iron enzyme catalysis to include a dioxygenase reactivity in which an unactivated alkene is converted to a vicinal diol.


Asunto(s)
Dioxigenasas/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ricinus/enzimología , Ácidos Esteáricos/metabolismo , Aceite de Ricino/química , Catálisis , Dioxigenasas/química , Cromatografía de Gases y Espectrometría de Masas , Oxigenasas de Función Mixta/química , Mutación , Ácido Oléico/química , Ácido Oléico/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Propanoles/metabolismo , Ricinus/genética , Ricinus/metabolismo , Ácidos Esteáricos/química
9.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34948146

RESUMEN

Copper (Cu) is an essential element involved in various metabolic processes in plants, but at concentrations above the threshold level, it becomes a potential stress factor. The effects of two different cytokinins, kinetin (KIN) and 6-benzylaminopurine (BAP), on chlorophyll a fluorescence parameters, stomatal responses and antioxidation mechanisms in castor (Ricinus communis L.) under Cu2+ toxicity was investigated. Ricinus communis plants were exposed to 80 and 160 µM CuSO4 added to the growth medium. Foliar spraying of 15 µM KIN and BAP was carried out on these seedlings. The application of these cytokinins enhanced the tissue water status, chlorophyll contents, stomatal opening and photosynthetic efficiency in the castor plants subjected to Cu2+ stress. The fluorescence parameters, such as Fm, Fv/Fo, Sm, photochemical and non-photochemical quantum yields, energy absorbed, energy trapped and electron transport per cross-sections, were more efficiently modulated by BAP application than KIN under Cu2+ toxicity. There was also effective alleviation of reactive oxygen species by enzymatic and non-enzymatic antioxidation systems, reducing the membrane lipid peroxidation, which brought about a relative enhancement in the membrane stability index. Of the various treatments, 80 µM CuSO4 + BAP recorded the highest increase in photosynthetic efficiency compared to other cytokinin treatments. Therefore, it can be concluded that BAP could effectively alleviate the detrimental effects of Cu2+toxicity in cotyledonary leaves of R. communis by effectively modulating stomatal responses and antioxidation mechanisms, thereby enhancing the photosynthetic apparatus' functioning.


Asunto(s)
Compuestos de Bencilo/farmacología , Cobre/farmacología , Fotosíntesis/efectos de los fármacos , Purinas/farmacología , Ricinus/metabolismo , Plantones/metabolismo
10.
Molecules ; 26(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067825

RESUMEN

Lupeol, a natural lupane-type pentacyclic triterpene, possesses various pharmacological properties, and its production attracts attention. Significant quantities of lupeol are deposited on the castor aerial organ surface and are easily extractable as a predominant wax constituent. Thus, castor might be considered as a potential bioreactor for the production of lupeol. The lupeol biosynthesis pathway is well known, but how it is regulated remains largely unknown. Among large numbers of castor cultivars, we targeted one accession line (337) with high levels of lupeol on its stem surface and low levels thereof on its hypocotyl surface, implicating that lupeol synthesis is differentially regulated in the two organs. To explore the underlying mechanisms, we did comparative transcriptome analysis of the first internode of 337 stem and the upper hypocotyl. Our results show that large amounts of auxin-related genes are differentially expressed in both parts, implying some possible interactions between auxin and lupeol production. We also found that several auxin-responsive cis-elements are present in promoter regions of HMGR and LUS genes encoding two key enzymes involved in lupeol production. Furthermore, auxin treatments apparently induced the expression levels of RcHMGR and RcLUS. Furthermore, we observed that auxin treatment significantly increased lupeol contents, whereas inhibiting auxin transport led to an opposite phenotype. Our study reveals some relationships between hormone activity and lupeol synthesis and might provide a promising way for improving lupeol yields in castor.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Triterpenos Pentacíclicos/metabolismo , Ricinus/metabolismo , Aceite de Ricino/aislamiento & purificación , Aceite de Ricino/metabolismo , Epidermis/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/análisis , Triterpenos Pentacíclicos/análisis , Transducción de Señal , Transcriptoma/genética
11.
Environ Geochem Health ; 43(4): 1507-1521, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33501591

RESUMEN

A greenhouse experiment was performed to elucidate the potency of Prosopis juliflora charcoal (PJC) and banana waste compost (BWC) to improve soil fertility and enhance plant growth rate. Plantlets of Ricinus communis were grown in 0, 400, and 800 mg kg-1 Pb-spiked soil ameliorated with P. juliflora charcoal and banana waste compost at 0, 5%, and 10% (w/w) for 60 days. PJC and BWC significantly (p < 0.05) increased plant growth parameters, that is, number of leaves, node number, plant height, and leaf diameter and reduced oxidative stress manifested by the lesser production of proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) with respect to control plants. Soil usage of PJC at 10% decreased the Pb accumulation by 61%, whereas BWC decreased Pb concentration in roots by 56% concerning control. Field emission scanning electron microscope (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) showed high macro and microspores on the surface of charcoal while banana compost showed significant raise in the nutrient content (N, P, K, Zn, Ca, Fe, and Mg). Thermogravimetric (TG) and Fourier-transform infrared spectroscopy (FTIR) analysis of banana compost showed enhanced molar convolution of carbohydrate composites and nitrogen content. These findings pave a clear understanding that PJC and BWC are recalcitrant for Pb phytotoxicity and can also be used as nutrient-rich composites for increased crop production.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Compostaje , Plomo/metabolismo , Musa , Ricinus/metabolismo , Contaminantes del Suelo/metabolismo , Peróxido de Hidrógeno/análisis , Nitrógeno/análisis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Suelo/química
12.
Ecotoxicol Environ Saf ; 200: 110728, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32460048

RESUMEN

In this study, the effects of iron (Fe) nanoparticles (NPs) on Fe and heavy metal accumulations by castor (Ricinus communis L.) plants were investigated. The castor cultivar was planted in the soil contaminated with Pb and Zn for 48 days with Fe2O3 NPs treatments. The Fe and heavy metal concentrations in the plant tissues, the plant tissues' ultrastructures, and the Fe and heavy metal distributions in the soil aggregate were analyzed. The results of this study indicate that there is a mutual promotion relationship between Fe and heavy metals (Pb and Zn). The scanning electron microscopy (SEM) revealed ultrastructural differences in the xylem and phloem with Fe2O3 NPs addition, and the presence of Fe2O3 NPs may influence the synthesis of starch granules in response to heavy metal stress. Based on the analysis of the soil aggregate, α-Fe2O3 NPs and γ-Fe2O3 NPs changed the size distribution of the soil aggregate, that is, the macro-aggregate and the clay fraction contents increased and the micro-aggregate content decreased. Moreover, in the different size fractions of the soil aggregate, Fe2O3 NPs can change the Zn and Fe enrichment and migration between the macro-aggregate and clay fractions, and there is a synergistic effect between the Fe and Zn migration. In addition, in the castor organs (roots and shoots), the Zn accumulation was mainly determined by the Zn concentration of the macro-aggregate fraction, while the Fe accumulation was mainly determined by the Fe concentration of the micro-aggregate fraction. Overall, these direct observations help improve our understanding of the migration and transport characteristics of Fe and heavy metals in soil-plant systems when Fe nanoparticles are added to metal-contaminated soils.


Asunto(s)
Compuestos Férricos , Hierro/metabolismo , Plomo/metabolismo , Nanopartículas del Metal , Ricinus/metabolismo , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Hierro/análisis , Plomo/análisis , Ricinus/ultraestructura , Suelo/química , Contaminantes del Suelo/análisis , Zinc/análisis
13.
Proteomics ; 19(3): e1800347, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30474183

RESUMEN

Pollen grains are tiny structures vital for sexual reproduction and consequently seed and fruit production in angiosperms, and a source of many allergenic components responsible for deleterious implications for health worldwide. Current pollen research is mainly focused on unraveling the molecular mechanisms underlying the pollen germination and tube formation passing from the quiescent stage. In this context, an in-depth proteome analysis of the pollens from Ricinus communis at three different stages-that is, mature, hydrated, and in vitro germinated-is performed. This analysis results in the identification of 1950 proteins, including 1773, 1313, and 858, from mature, hydrated, and germinated pollens, respectively. Based on label-free quantification, 164 proteins are found to be significantly differentially abundant from mature to hydrated pollens, 40 proteins from hydrated to germinated, and 57 proteins from mature to germinated pollens, respectively. Most of the differentially abundant proteins are related to protein, carbohydrate, and energy metabolism and signaling. Besides other functional classes, a reasonable number of the proteins are predicted to be allergenic proteins, previously undiscovered. This is the first in-deep proteome analysis of the R. communis pollens and, to the best of our knowledge, one of the most complete proteome dataset identified from the pollens of any plant species, thus providing a reference proteome for researchers interested in pollen biology.


Asunto(s)
Proteínas de Plantas/análisis , Polen/química , Ricinus/química , Germinación , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Proteómica , Ricinus/crecimiento & desarrollo , Ricinus/metabolismo , Agua/metabolismo
14.
BMC Genomics ; 20(1): 456, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170917

RESUMEN

BACKGROUND: Ricinus communis is a highly economically valuable oil crop plant from the spurge family, Euphorbiaceae. However, the available reference genomes are incomplete and to date studies on ricinoleic acid biosynthesis at the transcriptional level are limited. RESULTS: In this study, we combined PacBio single-molecule long read isoform and Illumina RNA sequencing to identify the alternative splicing (AS) events, novel isoforms, fusion genes, long non-coding RNAs (lncRNAs) and alternative polyadenylation (APA) sites to unveil the transcriptomic complexity of castor beans and identify critical genes related to ricinoleic acid biosynthesis. Here, we identified 11,285 AS-variants distributed in 21,448 novel genes and detected 520 fusion genes, 320 lncRNAs and 9511 (APA-sites). Furthermore, a total of 6067, 5983 and 4058 differentially expressed genes between developing beans of the R. communis lines 349 and 1115 with extremely different oil content were identified at 7, 14 and 21 days after flowering, respectively. Specifically, 14, 18 and 11 DEGs were annotated encoding key enzymes related to ricinoleic acid biosynthesis reflecting the higher castor oil content of 1115 compared than 349. Quantitative real-time RT-PCR further validated fifteen of these DEGs at three-time points. CONCLUSION: Our results significantly improved the existed gene models of R. communis, and a putative model of key genes was built to show the differences between strains 349 and 1115, illustrating the molecular mechanism of castor oil biosynthesis. A multi-transcriptome database and candidate genes were provided to further improve the level of ricinoleic acid in transgenic crops.


Asunto(s)
Ácidos Ricinoleicos/metabolismo , Ricinus/genética , Transcriptoma , Empalme Alternativo , Perfilación de la Expresión Génica , Fusión Génica , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Poliadenilación , ARN Largo no Codificante/genética , Ricinus/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/genética
15.
BMC Plant Biol ; 19(1): 181, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060493

RESUMEN

BACKGROUND: Castor (Ricinus communis L.) is an important seed oil crop. Castor oil is a highly demanded oil for several industrial uses. Current castor bean varieties suffer from low productivity and high risk of insect pests and diseases. High productive and pest/disease resistance varieties are needed. Lignin has been associated to the resistance for pest, disease and lodging. Lignin is produced from several metabolites of the phenylpropanoid pathway. PAL is the key enzyme of the phenylpropanoid pathway. The gene PAL may assist in the improvement of resistance of castor bean. RESULTS: The RcPAL CDs was amplified and its function was examined by transgenic overexpression and antisense expression, lignin histochemical staining, real-time PCR, lignin content measurement and morphological investigation. Its full length was 2145 bp, encoding 714 amino acids. The overexpression of RcPAL (7.2 times) increased significantly the PAL activity, dyeing depth of xylem cells and lignin content (14.44%), resulting in a significantly lower plant height, deeper and thicker blade, more green leaves, shorter internode, thicker stem diameter, and opposite in antisense expression plants (lignin content lowered by 27.1%), demonstrated that the gene RcPAL was a key gene in castor lignin biosynthesis. CONCLUSIONS: The gene RcPAL is a key gene in castor lignin biosynthesis and can be induced to express under mechanical damage stress. When up-regulated, it increased the lignin content significantly and dwarfed the plant height, and opposite when down-regulated. The gene RcPAL may assist in the improvement of resistance and plant type of castor bean.


Asunto(s)
Vías Biosintéticas/genética , Genes de Plantas , Lignina/biosíntesis , Fenilanina Amoníaco-Liasa/genética , Ricinus/genética , Ricinus/metabolismo , Cinamatos/farmacología , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Higromicina B/análogos & derivados , Higromicina B/farmacología , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Mecánico , Transformación Genética
16.
Metabolomics ; 15(1): 6, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30830477

RESUMEN

INTRODUCTION: Castor (Ricinus communis L.) seeds are valued for their production of oils which can comprise up to 90% hydroxy-fatty acids (ricinoleic acid). Castor oil contains mono-, di- and tri- ricinoleic acid containing triacylglycerols (TAGs). Although the enzymatic synthesis of ricinoleic acid is well described, the differential compartmentalization of these TAG molecular species has remained undefined. OBJECTIVES: To examine the distribution of hydroxy fatty acid accumulation within the endosperm and embryo tissues of castor seeds. METHODS: Matrix assisted laser desorption/ionization mass spectrometry imaging was used to map the distribution of triacylglycerols in tissue sections of castor seeds. In addition, the endosperm and embryo (cotyledons and embryonic axis) tissues were dissected and extracted for quantitative lipidomics analysis and Illumina-based RNA deep sequencing. RESULTS: This study revealed an unexpected heterogeneous tissue distribution of mono-, di- and tri- hydroxy-triacylglycerols in the embryo and endosperm tissues of castor seeds. Pathway analysis based on transcript abundance suggested that distinct embryo- and endosperm-specific mechanisms may exist for the shuttling of ricinoleic acid away from phosphatidylcholine (PC) and into hydroxy TAG production. The embryo-biased mechanism appears to favor removal of ricinoleic acid from PC through phophatidylcholine: diacylglycerol acyltransferase while the endosperm pathway appears to remove ricinoleic acid from the PC pool by preferences of phospholipase A (PLA2α) and/or phosphatidylcholine: diacylglycerol cholinephosphotransferase. CONCLUSIONS: Collectively, a combination of lipidomics and transcriptomics analyses revealed previously undefined spatial aspects of hydroxy fatty acid metabolism in castor seeds. These studies underscore a need for tissue-specific studies as a means to better understand the regulation of triacylglycerol accumulation in oilseeds.


Asunto(s)
Ácidos Ricinoleicos/metabolismo , Ricinus/metabolismo , Ricinus communis/metabolismo , Aceite de Ricino/metabolismo , Diacilglicerol Colinafosfotransferasa , Ácidos Grasos/metabolismo , Fosfolipasas A2 Grupo IV , Fosfatidilcolinas , Ácidos Ricinoleicos/análisis , Ricinus/química , Ricinus/genética , Semillas/química , Semillas/metabolismo , Análisis de Secuencia de ARN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Triglicéridos/metabolismo
17.
Ecotoxicol Environ Saf ; 174: 1-11, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30802672

RESUMEN

Cadmium (Cd) pollution of the soil is an important global environmental issue owing to its great toxicity. The study of metal isotope fractionation is a novel technique that could be used to identify and quantify metal uptake and transport mechanisms in plant. In this study, cadmium tolerant Ricinus communis and hyperaccumulator Solanum nigrum have been cultured in different Cd concentration nutrient solutions. The Cd isotope values, metal elements concentrations in the organs (root, stem and leaf) in the two plant species have been measured during the growth periods (10d, 15d, 20d, 25d, and 30d). The results indicate that the organs of S. nigrum could be enriched with lighter Cd isotopes compared with R. communis. In addition, the Cd isotope fractionation become smaller when the plants were subjected to high Cd toxicity, which indicates that Cd isotope fractionation reflected the extent of Cd toxicity to plants. This study advances our current view of Cd translocation machination in plants.


Asunto(s)
Cadmio/metabolismo , Ricinus/metabolismo , Contaminantes del Suelo/metabolismo , Solanum nigrum/metabolismo , Transporte Biológico , Cadmio/toxicidad , Isótopos , Ricinus/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Solanum nigrum/efectos de los fármacos
18.
Ecotoxicol Environ Saf ; 183: 109574, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442801

RESUMEN

Soil contamination with lead (Pb) is a serious global concern, adversely affecting crop production. Pot experiments were conducted to assess the efficacy of Prosopis biochar and rice husk ash for plant growth and mitigating Pb translocation in Ricinus communis. Physico-chemical characterization of both the amendments was carried out on a dry weight basis. Seedlings of R.communis were grown in 0, 400 and 800 mg kg-1 Pb spiked soil amended with Prosopis juliflora biochar (PJB) and rice husk ash (RHA) at 0, 2.5% and 5% (w/w) of soil for 60 days. Addition of biochar and rice husk ash to soils increased the Pb tolerance in R.communis, improved soil pH, nutrient intake, and antioxidant enzymatic activities. The biochar amendment significantly (p < 0.05) increased plant growth parameters (height, leaf diameter, nodes, and leaf number), protein (72%) and chlorophyll contents (38-52%), as did RHA to a lesser extent (increase of 10-31% in chlorophyll and 77% protein content) compared to unamended plants. Soil usage of RHA resulted in a more consistent decrease in Pb accumulation in the root, shoot, and leaf relative to PJB. Treatment with PJB at 5% decreased the accumulation of Pb in roots by 59% whereas RHA decreased Pb concentration in roots by 87%. The two distinct amendments significantly reduced the availability of soil Pb and decreased oxidative damage, as evidenced by the lower production of proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) in plants. Changes in infrared spectra confirmed that oxygenated phosphate, amide, ester and ether functional groups played a key role in binding accumulated Pb in roots as well as alleviation of Pb-induced phytotoxicity. Our findings conclude the amendments can be used as a stress regulator in mitigating Pb toxicity, which is important for all economic crop plants, including R.communis.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Plomo/metabolismo , Oryza/química , Ricinus/fisiología , Contaminantes del Suelo/metabolismo , Antioxidantes/metabolismo , Disponibilidad Biológica , Plomo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Ricinus/crecimiento & desarrollo , Ricinus/metabolismo , Contaminantes del Suelo/toxicidad
19.
Ecotoxicol Environ Saf ; 176: 42-49, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30921695

RESUMEN

In order to investigate the toxicity-resistance of eighteen Chinese native plants in lead (Pb)-zinc (Zn) mine tailings, we categorized their resistance to Pb and Zn, and tested their potential for phytoremediation effectiveness of Pb and Zn. Fourteen woody plant species belonging to 12 families, and 4 herbaceous species belonging to 4 families, were grown in pots with mixtures of 100% tailing +0% peat (CK), 90% tailing +10% peat (A1), and 80% tailing + 20% peat (A2), respectively. Plant height and biomass, chlorophyll content, and Pb and Zn contents of non-rhizosphere spoil mixtures and plant tissues were measured. Fifteen of the plants grew in all three spoil mixtures. Both A1 and A2 had higher plant height and biomass increment and chlorophyll contents than CK. The content of Pb and Zn in plant shoots and roots was CK > A1 > A2. The value of BCF less than 0.1, compared to 1, was a more precise classification basis for plants excluding metals. Screening for Pb and Zn resistant plants and their bioremediation potential produced the following candidate species: Sapium sebiferum, Salix matsudana, Hibiscus cannabinus, Corchorus capsularis, Ricinus communis, and Populus nigra. These species were highly Pb and Zn tolerant species, with notable growth characteristics and capacities to bioaccumulate Pb and Zn from the mine tailings. Compared to CK, the removal of Pb and Zn from non-rhizosphere spoil increased by an average of 9.64% and 9.6%, respectively in A1, but decreased in A2. The results indicated candidate species and 10% peat addition in the tailing were significant in phytoremediation of Pb and Zn regarding environmental safety.


Asunto(s)
Biodegradación Ambiental , Plomo/análisis , Desarrollo de la Planta/fisiología , Suelo , Zinc/análisis , Biomasa , China , Corchorus/crecimiento & desarrollo , Corchorus/metabolismo , Hibiscus/crecimiento & desarrollo , Hibiscus/metabolismo , Plomo/metabolismo , Minería , Raíces de Plantas/metabolismo , Brotes de la Planta/química , Populus/crecimiento & desarrollo , Populus/metabolismo , Ricinus/crecimiento & desarrollo , Ricinus/metabolismo , Salix/crecimiento & desarrollo , Salix/metabolismo , Contaminantes del Suelo/análisis , Madera/química , Madera/crecimiento & desarrollo , Madera/metabolismo , Zinc/metabolismo
20.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654474

RESUMEN

Early planting is one of the strategies used to increase grain yield in temperate regions. However, poor cold tolerance in castor inhibits seed germination, resulting in lower seedling emergence and biomass. Here, the elite castor variety Tongbi 5 was used to identify the differential abundance protein species (DAPS) between cold stress (4 °C) and control conditions (30 °C) imbibed seeds. As a result, 127 DAPS were identified according to isobaric tag for relative and absolute quantification (iTRAQ) strategy. These DAPS were mainly involved in carbohydrate and energy metabolism, translation and posttranslational modification, stress response, lipid transport and metabolism, and signal transduction. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the quantitative proteomics data collected here were reliable. This study provided some invaluable insights into the cold stress responses of early imbibed castor seeds: (1) up-accumulation of all DAPS involved in translation might confer cold tolerance by promoting protein synthesis; (2) stress-related proteins probably protect the cell against damage caused by cold stress; (3) up-accumulation of key DAPS associated with fatty acid biosynthesis might facilitate resistance or adaptation of imbibed castor seeds to cold stress by the increased content of unsaturated fatty acid (UFA). The data has been deposited to the ProteomeXchange with identifier PXD010043.


Asunto(s)
Respuesta al Choque por Frío , Proteómica/métodos , Ricinus/metabolismo , Ricinus/fisiología , Semillas/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Germinación , Marcaje Isotópico , Modelos Biológicos , Anotación de Secuencia Molecular , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados , Ricinus/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA