Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 690
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 157(2): 433-446, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725409

RESUMEN

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:


Asunto(s)
Cadherinas/metabolismo , Enterocitos/metabolismo , Microvellosidades/metabolismo , Animales , Células COS , Células CACO-2 , Proteínas Relacionadas con las Cadherinas , Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Enterocitos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Microvellosidades/ultraestructura , Miosinas/metabolismo , Síndromes de Usher/patología
2.
Hum Mol Genet ; 32(3): 431-449, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997788

RESUMEN

Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).


Asunto(s)
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
J Med Genet ; 61(7): 613-620, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38499336

RESUMEN

BACKGROUND: As gene-specific therapy for inherited retinal dystrophy (IRD) advances, unified variant interpretation across institutes is becoming increasingly important. This study aims to update the genetic findings of 86 retinitis pigmentosa (RP)-related genes in a large number of Japanese patients with RP by applying the standardised variant interpretation guidelines for Japanese patients with IRD (J-IRD-VI guidelines) built upon the American College of Medical Genetics and Genomics and the Association for Molecular Pathology rules, and assess the contribution of these genes in RP-allied diseases. METHODS: We assessed 2325 probands with RP (n=2155, including n=1204 sequenced previously with the same sequencing panel) and allied diseases (n=170, newly analysed), including Usher syndrome, Leber congenital amaurosis and cone-rod dystrophy (CRD). Target sequencing using a panel of 86 genes was performed. The variants were interpreted according to the J-IRD-VI guidelines. RESULTS: A total of 3564 variants were detected, of which 524 variants were interpreted as pathogenic or likely pathogenic. Among these 524 variants, 280 (53.4%) had been either undetected or interpreted as variants of unknown significance or benign variants in our earlier study of 1204 patients with RP. This led to a genetic diagnostic rate in 38.6% of patients with RP, with EYS accounting for 46.7% of the genetically solved patients, showing a 9% increase in diagnostic rate from our earlier study. The genetic diagnostic rate for patients with CRD was 28.2%, with RP-related genes significantly contributing over other allied diseases. CONCLUSION: A large-scale genetic analysis using the J-IRD-VI guidelines highlighted the population-specific genetic findings for Japanese patients with IRD; these findings serve as a foundation for the clinical application of gene-specific therapies.


Asunto(s)
Retinitis Pigmentosa , Femenino , Humanos , Masculino , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/patología , Pueblos del Este de Asia/genética , Predisposición Genética a la Enfermedad , Variación Genética , Japón , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/patología , Mutación , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Síndromes de Usher/genética
4.
Hum Genet ; 143(2): 197-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38282009

RESUMEN

The purpose of this study was to screen Copy Number Variations (CNVs) in 35 unsolved Inherited Retinal Dystrophy (IRD) families. Initially, next generation sequencing, including a specific Hereditary Eye Disease Enrichment Panel or Whole exome sequencing, was employed to screen (likely) pathogenic Single-nucleotide Variants (SNVs) and small Insertions and Deletions (indels) for these cases. All available SNVs and indels were further validated and co-segregation analyses were performed in available family members by Sanger sequencing. If not, after excluding deep intronic variants, Multiplex ligation-dependent probe amplification (MLPA), quantitative fluorescence PCR (QF-PCR) and Sanger sequencing were employed to screen CNVs. We determined that 18 probands who had heterozygous SNVs/indels or whose parents were not consanguineous but had homozygous SNVs/indels in autosomal recessive IRDs genes had CNVs in another allele of these genes, 11 families had disease-causing hemizygous CNVs in X-linked IRD genes, 6 families had (likely) pathogenic heterozygous CNVs in PRPF31 gene. Of 35 families, 33 different CNVs in 16 IRD-associated genes were detected, with PRPF31, EYS and USH2A the most common disease-causing gene in CNVs. Twenty-six and 7 of them were deletion and duplication CNVs, respectively. Among them, 14 CNVs were first reported in this study. Our research indicates that CNVs contribute a lot to IRDs, and screening of CNVs substantially increases the diagnostic rate of IRD. Our results emphasize that MLPA and QF-PCR are ideal methods to validate CNVs, and the novel CNVs reported herein expand the mutational spectrums of IRDs.


Asunto(s)
Distrofias Retinianas , Síndromes de Usher , Humanos , Variaciones en el Número de Copia de ADN , Mutación , Heterocigoto , Proteínas del Ojo/genética
5.
Exp Eye Res ; 247: 110047, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151776

RESUMEN

Usher syndrome (USH) is a recessive genetic disorder manifested by congenital sensorineural hearing loss and progressive retinitis pigmentosa, which leads to audiovisual impairment. We report a patient with Usher syndrome type 1 with new compound heterozygous MYO7A variants. A total of four members from the USH family were included. Medical history and retinal examinations were taken and genomic DNA from peripheral blood was extracted in the proband and other members. 381 retinal disease-associated genes were screened using targeted sequence capture array technology and Sanger sequencing was used to confirm the screening results. Scanning laser ophthalmoscope showed bone spicule pigmentary deposits in the mid-peripheral retina and whitish and thin retinal blood vessels especially in the arterioles. Optical coherence tomography showed that the centrality of the macular ellipsoid band disappeared in both eyes, and only remained near the fovea. Visual field examination showed a progressive loss of the visual field in a concentric pattern in both eyes. The electroretinography showed a significant decrease in the amplitudes of a- and b-waves in the scotopic and photopic condition. DNA sequencing identified the compound heterozygous variants including c.1003+1G > A: p. (?) and c.5957_5958del: p.G1987Lfs*50 of MYO7A, with the latter being novel. In this study, we found a novel compound heterozygous variant in MYO7A, which enriched the mutation spectrum and expanded our understanding of the heterogeneity of phenotype and genotype of Usher syndrome type 1.


Asunto(s)
Electrorretinografía , Miosina VIIa , Síndromes de Usher , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Mutacional de ADN , Heterocigoto , Mutación , Miosina VIIa/genética , Linaje , Tomografía de Coherencia Óptica , Síndromes de Usher/genética , Campos Visuales/fisiología
6.
Hum Genomics ; 17(1): 1, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36597107

RESUMEN

BACKGROUND: At present, the hereditary hearing loss homepage, ( https://hereditaryhearingloss.org/ ), includes 258 deafness genes and more than 500 genes that have been reported to cause deafness. With few exceptions, the region-specific distributions are unclear for many of the identified variants and genes. METHODS: Here, we used a custom capture panel to perform targeted sequencing of 518 genes in a cohort of 879 deaf Chinese probands who lived in Yunnan. Mutation sites of the parents were performed by high-throughput sequencing and validated by Sanger sequencing. RESULTS: The ratio of male to female patients was close to 1:1 (441:438) and the age of onset was mainly under six. Most patients (93.5%) were diagnosed with moderate to severe deafness. Four hundred and twenty-eight patients had variants in a deafness gene, with a detection rate of 48.7%. Pathogenic variants were detected in 98 genes and a number of these were recurrent within the cohort. However, many of the variants were rarely observed in the cohort. In accordance with the American College of Medical Genetics and Genomics, pathogenic, likely pathogenic and variants of uncertain significance accounted for 34.3%, 19.3% and 46.4% of all detected variants, respectively. The most common genes included GJB2, SLC26A4, MYO15A, MYO7A, TMC1, CDH23, USH2A and WFS1, which contained variants in more than ten cases. The two genes with the highest mutation frequency were GJB2 and SLC26A4, which accounted for 28.5% (122/428) of positive patients. We showed that more than 60.3% of coding variants were rare and novel. Of the variants that we detected, 80.0% were in coding regions, 17.9% were in introns and 2.1% were copy number variants. CONCLUSION: The common mutation genes and loci detected in this study were different from those detected in other regions or ethnic groups, which suggested that genetic screening or testing programs for deafness should be formulated in accordance with the genetic characteristics of the region.


Asunto(s)
Pueblos del Este de Asia , Síndromes de Usher , Humanos , Masculino , Niño , Femenino , China/epidemiología , Pruebas Genéticas , Mutación , Síndromes de Usher/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Linaje , Conexinas/genética
7.
Am J Med Genet A ; 194(5): e63517, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38149346

RESUMEN

Mucopolysaccharidosis type IIIA (MPS IIIA or Sanfilippo syndrome type A) is an autosomal recessive lysosomal storage disorder caused by pathogenic variants in the SGSH gene encoding N-sulfoglucosamine sulfohydrolase, an enzyme involved in the degradation of heparan sulfate. MPS IIIA is typically characterized by neurocognitive decline and hepatosplenomegaly with childhood onset. Here, we report on a 53-year-old male subject initially diagnosed with Usher syndrome for the concurrence of retinitis pigmentosa and sensorineural hearing loss. Clinical exome sequencing identified biallelic missense variants in SGSH, and biochemical assays showed complete deficiency of sulfamidase activity and increased urinary glycosaminoglycan excretion. Reverse phenotyping revealed left ventricle pseudo-hypertrophy, hepatosplenomegaly, bilateral deep white matter hyperintensities upon brain MRI, and decreased cortical metabolic activity by PET-CT. On neuropsychological testing, the proband presented only partial and isolated verbal memory deficits. This case illustrates the power of unbiased, comprehensive genetic testing for the diagnosis of challenging mild or atypical forms of MPS IIIA.


Asunto(s)
Mucopolisacaridosis III , Síndromes de Usher , Masculino , Humanos , Niño , Persona de Mediana Edad , Mucopolisacaridosis III/diagnóstico , Mucopolisacaridosis III/genética , Hidrolasas/genética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Pruebas Genéticas , Hepatomegalia/genética
8.
Mol Biol Rep ; 51(1): 683, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796585

RESUMEN

BACKGROUND: Usher syndrome 1 (USH1) is the most severe subtype of Usher syndrome characterized by severe sensorineural hearing impairment, retinitis pigmentosa, and vestibular areflexia. USH1 is usually induced by variants in MYO7A, a gene that encodes the myosin-VIIa protein. Myosin-VIIA is effectively involved in intracellular molecular traffic essential for the proper function of the cochlea, the retinal photoreceptors, and the retinal pigmented epithelial cells. METHODS AND RESULTS: In this study, we report a new homozygous missense variant (NM_000260.4: c.1657 C > T p.(His553Tyr)) in MYO7A of a 28-year-old female with symptoms consistent with USH1. This variant, c.1657 C > T p.(His553Tyr) is positioned in the highly conserved myosin-VIIA motor domain. Previous studies showed that variants in this domain might disrupt the ability of the protein to bind to actin and thus cause the disorder. CONCLUSIONS: Our findings contribute to our understanding of the phenotypic and mutational spectrum of USH1 associated with autosomal recessive MYO7A variants and emphasize the important role of molecular testing in accurately diagnosing this syndrome. More advanced research is required to understand the functional effect of the identified variant and the genotype-phonotype correlations of MYO7A-related Usher syndrome 1.


Asunto(s)
Homocigoto , Mutación Missense , Miosina VIIa , Síndromes de Usher , Síndromes de Usher/genética , Miosina VIIa/metabolismo , Miosina VIIa/genética , Humanos , Femenino , Mutación Missense/genética , Adulto , Miosinas/genética , Linaje
9.
Mol Ther ; 31(8): 2439-2453, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37312453

RESUMEN

Usher syndrome type 1F (USH1F), characterized by congenital lack of hearing and balance and progressive loss of vision, is caused by mutations in the PCDH15 gene. In the Ashkenazi population, a recessive truncation mutation accounts for a large proportion of USH1F cases. The truncation is caused by a single C→T mutation, which converts an arginine codon to a stop (R245X). To test the potential for base editors to revert this mutation, we developed a humanized Pcdh15R245X mouse model for USH1F. Mice homozygous for the R245X mutation were deaf and exhibited profound balance deficits, while heterozygous mice were unaffected. Here we show that an adenine base editor (ABE) is capable of reversing the R245X mutation to restore the PCDH15 sequence and function. We packaged a split-intein ABE into dual adeno-associated virus (AAV) vectors and delivered them into cochleas of neonatal USH1F mice. Hearing was not restored in a Pcdh15 constitutive null mouse despite base editing, perhaps because of early disorganization of cochlear hair cells. However, injection of vectors encoding the split ABE into a late-deletion conditional Pcdh15 knockout rescued hearing. This study demonstrates the ability of an ABE to correct the PCDH15 R245X mutation in the cochlea and restore hearing.


Asunto(s)
Síndromes de Usher , Ratones , Animales , Síndromes de Usher/genética , Síndromes de Usher/terapia , Edición Génica , Mutación , Audición/genética , Cadherinas/genética
10.
Mol Ther ; 31(12): 3502-3519, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37915173

RESUMEN

Usher syndrome 1B (USH1B) is a devastating genetic disorder with congenital deafness, loss of balance, and blindness caused by mutations in the myosin-VIIa (MYO7A) gene, for which there is currently no cure. We developed a gene therapy approach addressing the vestibulo-cochlear deficits of USH1B using a third-generation, high-capacity lentiviral vector system capable of delivering the large 6,645-bp MYO7A cDNA. Lentivirally delivered MYO7A and co-encoded dTomato were successfully expressed in the cochlear cell line HEI-OC1. In normal-hearing mice, both cochlea and the vestibular organ were efficiently transduced, and ectopic MYO7A overexpression did not show any adverse effects. In Shaker-1 mice, an USH1B disease model based on Myo7a mutation, cochlear and vestibular hair cells, the main inner ear cell types affected in USH1B, were successfully transduced. In homozygous mutant mice, delivery of MYO7A at postnatal day 16 resulted in a trend for partial recovery of auditory function and in strongly reduced balance deficits. Heterozygous mutant mice were found to develop severe hearing loss at 6 months of age without balance deficits, and lentiviral MYO7A gene therapy completely rescued hearing to wild-type hearing thresholds. In summary, this study demonstrates improved hearing and balance function through lentiviral gene therapy in the inner ear.


Asunto(s)
Miosinas , Síndromes de Usher , Ratones , Animales , Miosinas/genética , Miosinas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Miosina VIIa/genética , Síndromes de Usher/genética , Síndromes de Usher/terapia , Modelos Animales de Enfermedad , Mutación , Terapia Genética
11.
Mol Ther ; 31(9): 2755-2766, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37337429

RESUMEN

USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development.


Asunto(s)
Síndromes de Usher , Animales , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Pez Cebra/genética , Células HEK293 , Mutación , ADN , Plásmidos/genética , Proteínas de la Matriz Extracelular/genética
12.
Mol Ther ; 31(12): 3490-3501, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37864333

RESUMEN

Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Ratones , Animales , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Retina/metabolismo , Mutación , Cadherinas/genética , Cadherinas/metabolismo
13.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 701-715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37341837

RESUMEN

PURPOSE: This article presents a review of the main causes of inherited dual sensory impairment (DSI) with an emphasis on the multidisciplinary approach. METHODS: A narrative review of English literature published before January 2023 was conducted using PubMed, Medline, and Scopus databases. The different causes of inherited DSI are discussed from a multidisciplinary perspective. RESULTS: There are a wide range of dual sensory impairment (DSI), commonly referred to as blindness and deafness. While Usher syndrome is the most frequent genetic cause, other genetic syndromes such as Alport syndrome or Stickler syndrome can also lead to DSI. Various retinal phenotypes, including pigmentary retinopathy as seen in Usher syndrome, vitreoretinopathy as in Stickler syndrome, and macular dystrophy as in Alport syndrome, along with type of hearing loss (sensorineural or conductive) and additional systemic symptoms can aid in diagnostic suspicion. A thorough ophthalmologic and otorhinolaryngologic examination can help guide diagnosis, which can then be confirmed with genetic studies, crucial for determining prognosis. Effective hearing rehabilitation measures, such as hearing implants, and visual rehabilitation measures, such as low vision optical devices, are crucial for maintaining social interaction and proper development in these patients. CONCLUSIONS: While Usher syndrome is the primary cause of inherited dual sensory impairment (DSI), other genetic syndromes can also lead to this condition. A proper diagnostic approach based on retinal phenotypes and types of hearing loss can aid in ruling out alternative causes. Multidisciplinary approaches can assist in reaching a definitive diagnosis, which has significant prognostic implications.


Asunto(s)
Artritis , Enfermedades del Tejido Conjuntivo , Enfermedades Hereditarias del Ojo , Pérdida Auditiva Sensorineural , Nefritis Hereditaria , Desprendimiento de Retina , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Ceguera
14.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1883-1897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38189974

RESUMEN

PURPOSE: Retinitis pigmentosa (RP) comprises a genetically and clinically heterogeneous group of inherited retinal degenerations, where 20-30% of patients exhibit extra-ocular manifestations (syndromic RP). Understanding the genetic profile of RP has important implications for disease prognosis and genetic counseling. This study aimed to characterize the genetic profile of syndromic RP in Portugal. METHODS: Multicenter, retrospective cohort study. Six Portuguese healthcare providers identified patients with a clinical diagnosis of syndromic RP and available genetic testing results. All patients had been previously subjected to a detailed ophthalmologic examination and clinically oriented genetic testing. Genetic variants were classified according to the American College of Medical Genetics and Genomics; only likely pathogenic or pathogenic variants were considered relevant for disease etiology. RESULTS: One hundred and twenty-two patients (53.3% males) from 100 families were included. Usher syndrome was the most frequent diagnosis (62.0%), followed by Bardet-Biedl (19.0%) and Senior-Løken syndromes (7.0%). Deleterious variants were identified in 86/100 families for a diagnostic yield of 86.0% (87.1% for Usher and 94.7% for Bardet-Biedl). A total of 81 genetic variants were identified in 25 different genes, 22 of which are novel. USH2A and MYO7A were responsible for most type II and type I Usher syndrome cases, respectively. BBS1 variants were the cause of Bardet-Biedl syndrome in 52.6% of families. Best-corrected visual acuity (BCVA) records were available at baseline and last visit for 99 patients (198 eyes), with a median follow-up of 62.0 months. The mean BCVA was 56.5 ETDRS letters at baseline (Snellen equivalent ~ 20/80), declining to 44.9 ETDRS letters (Snellen equivalent ~ 20/125) at the last available follow-up (p < 0.001). CONCLUSION: This is the first multicenter study depicting the genetic profile of syndromic RP in Portugal, thus contributing toward a better understanding of this heterogeneous disease group. Usher and Bardet-Biedl syndromes were found to be the most common types of syndromic RP in this large Portuguese cohort. A high diagnostic yield was obtained, highlighting current genetic testing capabilities in providing a molecular diagnosis to most affected individuals. This has major implications in determining disease-related prognosis and providing targeted genetic counseling for syndromic RP patients in Portugal.


Asunto(s)
Pruebas Genéticas , Mutación , Retinitis Pigmentosa , Humanos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/epidemiología , Portugal/epidemiología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Adolescente , Adulto Joven , Niño , Anciano , Linaje , Síndromes de Usher/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/epidemiología , Preescolar , Análisis Mutacional de ADN , Estudios de Seguimiento , ADN/genética , Proteínas del Ojo/genética
15.
BMC Ophthalmol ; 24(1): 306, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044131

RESUMEN

BACKGROUND: Usher syndrome (USH) encompasses a group of disorders characterized by congenital sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP). We described the clinical findings, natural history, and molecular analyses of USH patients identified during a large-scale screening to identify quantitative traits related to ocular disorders in the SardiNIA project cohort. METHODS: We identified 3 USH-affected families out of a cohort of 6,148 healthy subjects. 9 subjects presented a pathological phenotype, with SNHL and RP. All patients and their family members underwent a complete ophthalmic examination including best-corrected visual acuity, slit-lamp biomicroscopy, fundoscopy, fundus autofluorescence, spectral-domain optical coherence tomography, and electrophysiological testing. Audiological evaluation was performed with a clinical audiometer. Genotyping was performed using several arrays integrated with whole genome sequence data providing approximately 22 million markers equally distributed for each subject analyzed. Molecular diagnostics focused on analysis of the following candidate genes: MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31, CLRN1, and PDZD7. RESULTS: A single missense causal variant in USH2A gene was identified in homozygous status in all patients and in heterozygous status in unaffected parents. The presence of multiple homozygous patients with the same phenotypic severity of the syndromic form suggests that the Sardinian USH phenotype is the result of a founder effect on a specific pathogenic variant related haplotype. The frequency of heterozygotes in general Sardinian population is 1.89. Additionally, to provide new insights into the structure of usherin and the pathological mechanisms caused by small pathogenic in-frame variants, like p.Pro3272Leu, molecular dynamics simulations of native and mutant protein-protein and protein-ligand complexes were performed that predicted a destabilization of the protein with a decrease in the free energy change. CONCLUSIONS: Our results suggest that our approach is effective for the genetic diagnosis of USH. Based on the heterozygous frequency, targeted screening of this variant in the general population and in families at risk or with familial USH can be suggested. This can lead to more accurate molecular diagnosis, better genetic counseling, and improved molecular epidemiology data that are critical for future intervention plans. TRIAL REGISTRATION: We did not perform any health-related interventions for the participants.


Asunto(s)
Linaje , Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/diagnóstico , Italia/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Proteínas de la Matriz Extracelular/genética , Análisis Mutacional de ADN , Tomografía de Coherencia Óptica , Fenotipo , Efecto Fundador , Mutación Missense , Electrorretinografía , Adulto Joven , Adolescente , Agudeza Visual , Pruebas Genéticas/métodos
16.
BMC Ophthalmol ; 24(1): 60, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347443

RESUMEN

BACKGROUND: Inherited retinal dystrophies are hereditary diseases which have in common the progressive degeneration of photoreceptors. They are a group of diseases with clinical, genetic, and allelic heterogeneity. There is limited information regarding the genetic landscape of inherited retinal diseases in Mexico, therefore, the present study was conducted in the northeast region of the country. METHODS: Patients with inherited retinal dystrophies were included. A complete history, full ophthalmological and medical genetics evaluations, and genetic analysis through a targeted NGS panel for inherited retinal dystrophies comprising at least 293 genes were undertaken. RESULTS: A total of 126 patients were included. Cases were solved in 74.6% of the study's population. Retinitis pigmentosa accounted for the most found inherited retinal disease. Ninety-nine causal variants were found, being USH2A and ABCA4 the most affected genes (26 and 15 cases, respectively). CONCLUSIONS: The present study documents the most prevalent causative genes in IRDs, as USH2A, in northeastern Mexico. This contrasts with previous reports of IRDs in other zones of the country. Further studies, targeting previously unstudied populations in Mexico are important to document the genetic background of inherited retinal dystrophies in the country.


Asunto(s)
Distrofias Retinianas , Retinitis Pigmentosa , Síndromes de Usher , Humanos , Mutación , México/epidemiología , Distrofias Retinianas/epidemiología , Distrofias Retinianas/genética , Retinitis Pigmentosa/genética , Linaje , Transportadoras de Casetes de Unión a ATP/genética
17.
Ophthalmic Res ; 67(1): 107-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38016437

RESUMEN

BACKGROUND: Although the p.C759F (c.2276G>T, p.Cys759Phe) variant in the USH2A gene has been identified in association with retinal degeneration by several authors, its pathogenicity has been questioned once by the publication of two unaffected homozygotes from a single family. OBJECTIVES: The objective of the study was to ascertain the role of p.C759F in hereditary retinal disease. METHODS: We examined 87 research articles reporting on patients carrying this variant and then used this information as primary data for a series of meta-analytical tests. RESULTS: Independent statistical analyses showed that p.C759F (i) is highly enriched in patients with respect to healthy individuals, (ii) represents a clear-cut recessive allele causing disease when it is in trans with other mutations, (iii) is pathogenic in homozygotes. CONCLUSIONS: Our results confirm that p.C759F is a bona fide mutation, leading to retinal blindness according to a recessive pattern of inheritance.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Retinitis Pigmentosa/genética , Síndromes de Usher/genética , Mutación , Genotipo , Proteínas de la Matriz Extracelular/genética , Análisis Mutacional de ADN
18.
Eur Arch Otorhinolaryngol ; 281(3): 1115-1129, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37930386

RESUMEN

PURPOSE: This study is a systematic review of the literature which seeks to evaluate auditory and quality of life (QOL) outcomes of cochlear implantation in patients with Usher syndrome. METHODS: Systematic review of studies indexed in Medline via PubMed, Ovid EMBASE, Web of Science, CENTRAL and clinicaltrials.gov was performed up to March 9th 2022, conducted in accordance with the PRISMA statement. Patient demographics, comorbidity, details of cochlear implantation, auditory, and QOL outcomes were extracted and summarized. RESULTS: 33 studies reported over 217 cochlear implants in 187 patients with Usher syndrome, comprising subtypes 1 (56 patients), 2 (9 patients), 3 (23 patients), and not specified (99 patients). Auditory outcomes included improved sound detection, speech perception, and speech intelligibility. QOL outcomes were reported for 75 patients, with benefit reported in the majority. CONCLUSIONS: Many patients with Usher syndrome develop improved auditory outcomes after cochlear implantation with early implantation being an important factor.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Percepción del Habla , Síndromes de Usher , Humanos , Síndromes de Usher/cirugía , Calidad de Vida , Resultado del Tratamiento
19.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39337481

RESUMEN

Usher syndrome (USH) is an inherited disorder characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP)-related vision loss, and vestibular dysfunction. USH presents itself as three distinct clinical types, 1, 2, and 3, with no biomarker for early detection. This study aimed to explore whether microRNA (miRNA) expression in USH cell lines is dysregulated compared to the miRNA expression pattern in a cell line derived from a healthy human subject. Lymphocytes from USH patients and healthy individuals were isolated and transformed into stable cell lines using Epstein-Barr virus (EBV). DNA from these cell lines was sequenced using a targeted panel to identify gene variants associated with USH types 1, 2, and 3. Microarray analysis was performed on RNA from both USH and control cell lines using NanoString miRNA microarray technology. Dysregulated miRNAs identified by the microarray were validated using droplet digital PCR technology. DNA sequencing revealed that two USH patients had USH type 1 with gene variants in USH1B (MYO7A) and USH1D (CDH23), while the other two patients were classified as USH type 2 (USH2A) and USH type 3 (CLRN-1), respectively. The NanoString miRNA microarray detected 92 differentially expressed miRNAs in USH cell lines compared to controls. Significantly altered miRNAs exhibited at least a twofold increase or decrease with a p value below 0.05. Among these miRNAs, 20 were specific to USH1, 14 to USH2, and 5 to USH3. Three miRNAs that are known as miRNA-183 family which are crucial for inner ear and retina development, have been significantly downregulated as compared to control cells. Subsequently, droplet digital PCR assays confirmed the dysregulation of the 12 most prominent miRNAs in USH cell lines. This study identifies several miRNA signatures in USH cell lines which may have potential utility in Usher syndrome identification.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs , Miosina VIIa , Síndromes de Usher , Humanos , Síndromes de Usher/genética , MicroARNs/genética , Perfilación de la Expresión Génica/métodos , Miosina VIIa/genética , Línea Celular , Genotipo , Masculino , Femenino , Proteínas de la Membrana/genética , Adulto , Proteínas Relacionadas con las Cadherinas , Proteínas de la Matriz Extracelular
20.
Mol Vis ; 29: 31-38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287646

RESUMEN

Background: Mutations in the USH2A gene are the leading cause of both non-syndromic autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, a syndromic form of RP characterized by retinal dystrophy and sensorineural hearing loss. To contribute to the expansion of the USH2A-related molecular spectrum, the results of genetic screening in a large cohort of Mexican patients are presented. Methods: The study population comprised 61 patients with a clinical diagnosis of either non-syndromic RP (n = 30) or Usher syndrome type 2 (USH2; n = 31) who were demonstrated to carry biallelic pathogenic variants in USH2A in a three-year period. Genetic screening was performed either by gene panel sequencing or by exome sequencing. A total of 72 available first- or second-degree relatives were also genotyped for familial segregation of the identified variants. Results: The USH2A mutational spectrum in RP patients included 39 distinct pathogenic variants, most of them of the missense type. The most common RP-causing variants were p.Cys759Phe (c.2276G>T), p.Glu767Serfs*21 (c.2299delG), and p.Cys319Tyr (c.956G>A), which together accounted for 25% of all RP variants. Novel USH2A mutations included three nonsense, two missense, two frameshift, and one intragenic deletion. The USH2A mutational spectrum in USH2 patients included 26 distinct pathogenic variants, most of them of the nonsense and frameshift types. The most common Usher syndrome-causing variants were p.Glu767Serfs*21 (c.2299delG), p.Arg334Trp (c.1000C>T), and c.12067-2A>G), which together accounted for 42% of all USH2-related variants. Novel Usher syndrome USH2A mutations included six nonsense, four frameshift, and two missense mutations. The c.2299delG mutation was associated with a common haplotype for SNPs located in exons 2-21 of USH2A, indicating a founder mutation effect. Conclusions: Our work expands the USH2A mutational profile by identifying 20 novel pathogenic variants causing syndromic and non-syndromic retinal dystrophy. The prevalent c.2299delG allele is shown to arise from a founder effect. Our results emphasize the usefulness of molecular screening in underrepresented populations for a better characterization of the molecular spectrum of common monogenic diseases.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/diagnóstico , Análisis Mutacional de ADN , Mutación , Retinitis Pigmentosa/genética , Proteínas de la Matriz Extracelular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA