Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269563

RESUMEN

Young sex chromosomes possess unique and ongoing dynamics that allow us to understand processes that have an impact on their evolution and divergence. The genus Silene includes species with evolutionarily young sex chromosomes, and two species of section Melandrium, namely Silene latifolia (24, XY) and Silene dioica (24, XY), are well-established models of sex chromosome evolution, Y chromosome degeneration, and sex determination. In both species, the X and Y chromosomes are strongly heteromorphic and differ in the genomic composition compared to the autosomes. It is generally accepted that for proper cell division, the longest chromosomal arm must not exceed half of the average length of the spindle axis at telophase. Yet, it is not clear what are the dynamics between males and females during mitosis and how the cell compensates for the presence of the large Y chromosome in one sex. Using hydroxyurea cell synchronization and 2D/3D microscopy, we determined the position of the sex chromosomes during the mitotic cell cycle and determined the upper limit for the expansion of sex chromosome non-recombining region. Using 3D specimen preparations, we found that the velocity of the large chromosomes is compensated by the distant positioning from the central interpolar axis, confirming previous mathematical modulations.


Asunto(s)
Cromátides/fisiología , Cromosomas Sexuales/fisiología , Silene/fisiología , Cromosomas de las Plantas/fisiología , Evolución Molecular , Hidroxiurea/farmacología , Hibridación Fluorescente in Situ , Microscopía Confocal , Mitosis , Silene/genética
2.
Planta ; 249(6): 1761-1778, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30826883

RESUMEN

MAIN CONCLUSION: Results provide significant comparison of leaf anatomy, pigment content, antioxidant response and phenolic profile between individuals from miscellaneous populations and describe unified cultivation protocols for further research on stress biology. The plant communities growing on heavy metal-polluted areas have attracted considerable attention due to their unique ability to tolerate enormous amounts of toxic ions. Three ecotypes of Silene vulgaris representing calamine (CAL), serpentine (SER) and non-metallicolous (NM) populations were evaluated to reveal specific adaptation traits to harsh environment. CAL leaves presented a distinct anatomical pattern compared to leaves of SER and NM plants, pointing to their xeromorphic adaptation. These differences were accompanied by divergent accumulation and composition of photosynthetic pigments as well as antioxidant enzyme activity. In CAL ecotype, the mechanism of reactive oxygen species scavenging is based on the joint action of superoxide dismutase and catalase, but in SER ecotype on superoxide dismutase and guaiacol-type peroxidase. On the contrary, the concentration of phenylpropanoids and flavonols in the ecotypes was unchanged, implying the existence of similar pathways of their synthesis/degradation functioning in CAL and SER populations. The tested specimens showed genetic variation (atpA/MspI marker). Based on diversification of S. vulgaris populations, we focused on the elaboration of similar in vitro conditions for synchronous cultivation of various ecotypes. The most balanced shoot culture growth was obtained on MS medium containing 0.1 mg l-1 NAA and 0.25 mg l-1 BA, while the most abundant callogenesis was observed on MS medium enriched with 0.5 mg l-1 NAA and 5.0 mg l-1 BA. For the first time, unified in vitro protocols were described for metallophytes providing the opportunity to conduct basic and applied research on stress biology and tolerance mechanisms under freely controlled conditions.


Asunto(s)
Adaptación Fisiológica , Antioxidantes/metabolismo , Metales Pesados/metabolismo , Silene/fisiología , Catalasa/metabolismo , Ecosistema , Ecotipo , Peroxidasa , Pigmentos Biológicos/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Polonia , Polimorfismo de Longitud del Fragmento de Restricción , Especies Reactivas de Oxígeno/metabolismo , Silene/anatomía & histología , Silene/genética , Contaminantes del Suelo/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
3.
Mol Ecol ; 27(19): 3889-3904, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29577481

RESUMEN

The evolution of reproductive barriers and their underlying genetic architecture is of central importance for the formation of new species. Reproductive barriers can be controlled either by few large-effect loci suggesting strong selection on key traits, or by many small-effect loci, consistent with gradual divergence or with selection on polygenic or multiple traits. Genetic coupling between reproductive barrier loci further promotes divergence, particularly divergence with ongoing gene flow. In this study, we investigated the genetic architectures of ten morphological, phenological and life history traits associated with reproductive barriers between the hybridizing sister species Silene dioica and S. latifolia; both are dioecious with XY-sex determination. We used quantitative trait locus (QTL) mapping in two reciprocal F2 crosses. One to six QTLs per trait, including nine major QTLs (PVE > 20%), were detected on 11 of the 12 linkage groups. We found strong evidence for coupling of QTLs for uncorrelated traits and for an important role of sex chromosomes in the genetic architectures of reproductive barrier traits. Unexpectedly, QTLs detected in the two F2 crosses differed largely, despite limited phenotypic differences between them and sufficient statistical power. The widely dispersed genetic architectures of traits associated with reproductive barriers suggest gradual divergence or multifarious selection. Coupling of the underlying QTLs likely promoted divergence with gene flow in this system. The low congruence of QTLs between the two crosses further points to variable and possibly redundant genetic architectures of traits associated with reproductive barriers, with important implications for the evolutionary dynamics of divergence and speciation.


Asunto(s)
Hibridación Genética , Sitios de Carácter Cuantitativo , Cromosomas Sexuales/genética , Silene/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Flujo Génico , Fenotipo , Reproducción/genética , Silene/fisiología , Suiza
4.
Glob Chang Biol ; 24(4): 1614-1625, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29155464

RESUMEN

Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species' abundance and distribution.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Silene/fisiología , Tundra , Biodiversidad , América del Norte , Estaciones del Año , Temperatura
5.
J Evol Biol ; 31(1): 111-122, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29094423

RESUMEN

Gynodioecy, the co-occurrence of females and hermaphrodites, is arguably the most common angiosperm gender polymorphism in many florae. Females' ability to invade and persist among hermaphrodites depends, in part, on pollinators providing adequate pollination to females. We directly measured diurnal and nocturnal pollinators' contributions to female and hermaphrodite seed production in artificial populations of gynodioecious Silene vulgaris by experimentally restricting pollinator access. We found that female relative seed production in this system depended strongly on pollination context: females produced more than twice as many seeds as hermaphrodites in the context of abundant, nectar-collecting moths. Conversely, females showed no seed production advantage in the context of pollen-collecting syrphid flies and bees due to acutely hermaphrodite-biased visitation. We infer that variation in pollinator type, behaviour and abundance may be important for achieving the female relative fitness thresholds necessary for the maintenance of gynodioecy. Generally, our study illustrates how pollinator-mediated mechanisms may influence the evolution of breeding systems and associated suites of floral traits. Segments of a pollinator community may facilitate gynodioecy by selecting for plant characteristics that increase the attractiveness of both sexes to pollinators, such as nectar rewards. Conversely, discriminating visitors in search of pollen may restrict gynodioecy in associated plant lineages by reducing male steriles' fitness below threshold levels.


Asunto(s)
Polinización , Silene/fisiología , Animales , Fenotipo , Reproducción , Semillas/fisiología
6.
Am J Bot ; 105(10): 1643-1652, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30276803

RESUMEN

PREMISE OF THE STUDY: Nursery pollination systems can range from obligate to facultative. In a system where generalists provide substantial pollination service, an important question is whether the cost of seed predation outweighs the benefit provided by the nursery pollinator to cause the plant to evolve toward more generalized pollination. Using a facultative system native to North America, we tested whether nursery pollinator vs. strictly mutualistic generalists affect mating-system parameters of the host plant and explored the implications for long-term coevolution. METHODS: We used paternity analyses with 11 microsatellite markers to characterize the mating system of Silene stellata when pollination service is primarily through the nursery pollinator Hadena ectypa and generalist moths. KEY RESULTS: Our experimental population of S. stellata was predominantly outcrossing (average outcrossing rate t = 0.83), and mating-system parameters were similar between pollinator groups. We detected significant correlations in both selfing and outcrossed paternity at the fruit and maternal family level, corresponding to limited pollen dispersal (mean = 3.9 m). Among individuals, variation in anther-stigma separation was positively associated with outcrossing rate, which suggests the importance of herkogamy in preventing selfing. CONCLUSIONS: Correlated paternity suggests that seeds from the same fruit and/or plants are sired by a limited number of pollen donors, resulting from low pollen dispersal and potential male-male competition. The similar mating-system parameters of the two pollinator groups suggest that selection for higher outcrossing in S. stellata is likely to be through floral design rather than through increased pollinator specialization with H. ectypa.


Asunto(s)
Polinización , Silene/fisiología , Reproducción , Reproducción Asexuada , Silene/genética , Tetraploidía , Virginia
7.
New Phytol ; 213(3): 1487-1499, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27775172

RESUMEN

In order to investigate the role of differential adaptation for the evolution of reproductive barriers, we conducted a multi-site transplant experiment with the dioecious sister species Silene dioica and S. latifolia and their hybrids. Crosses within species as well as reciprocal first-generation (F1 ) and second-generation (F2 ) interspecific hybrids were transplanted into six sites, three within each species' habitat. Survival and flowering were recorded over 4 yr. At all transplant sites, the local species outperformed the foreign species, reciprocal F1 hybrids performed intermediately and F2 hybrids underperformed in comparison to F1 hybrids (hybrid breakdown). Females generally had slightly higher cumulative fitness than males in both within- and between-species crosses and we thus found little evidence for Haldane's rule acting on field performance. The strength of selection against F1 and F2 hybrids as well as hybrid breakdown increased with increasing strength of habitat adaptation (i.e. the relative fitness difference between the local and the foreign species) across sites. Our results suggest that differential habitat adaptation led to ecologically dependent post-zygotic reproductive barriers and drives divergence and speciation in this Silene system.


Asunto(s)
Adaptación Fisiológica , Ecosistema , Especiación Genética , Silene/genética , Silene/fisiología , Cruzamientos Genéticos , Flores/fisiología , Aptitud Genética , Hibridación Genética , Modelos Biológicos , Razón de Masculinidad
8.
J Exp Bot ; 68(7): 1599-1612, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369520

RESUMEN

Cytoplasmic male sterility (CMS) is a widespread phenomenon in flowering plants caused by mitochondrial (mt) genes. CMS genes typically encode novel proteins that interfere with mt functions and can be silenced by nuclear fertility-restorer genes. Although the molecular basis of CMS is well established in a number of crop systems, our understanding of it in natural populations is far more limited. To identify CMS genes in a gynodioecious plant, Silene vulgaris, we constructed mt transcriptomes and compared transcript levels and RNA editing patterns in floral bud tissue from female and hermaphrodite full siblings. The transcriptomes from female and hermaphrodite individuals were very similar overall with respect to variation in levels of transcript abundance across the genome, the extent of RNA editing, and the order in which RNA editing and intron splicing events occurred. We found only a single genomic region that was highly overexpressed and differentially edited in females relative to hermaphrodites. This region is not located near any other transcribed elements and lacks an open-reading frame (ORF) of even moderate size. To our knowledge, this transcript would represent the first non-coding mt RNA associated with CMS in plants and is, therefore, an important target for future functional validation studies.


Asunto(s)
Genes Mitocondriales , Infertilidad Vegetal , Proteínas de Plantas/genética , ARN no Traducido , Silene/fisiología , Transcriptoma , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Edición de ARN , Silene/genética
9.
Am J Bot ; 103(8): 1508-23, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27519429

RESUMEN

PREMISE OF STUDY: Environmental heterogeneity over a species range can lead to divergent selection among populations, leading to phenotypic differences. The plant flavonoid pathway controls key reproductive and defense-related traits and responds to selection and environmental stressors, allowing for hypotheses about phenotypic divergence across environmental gradients. We hypothesized that with increasing elevation, more flavonoids would be produced as a response to increased UV radiation and that plants would be better defended against herbivores. METHODS: We measured floral color, flavonoids, and herbivory in natural populations of Silene vulgaris (Caryophyllaceae) along elevational transects in the French Alps. We correlated phenotypes with environmental variables and calculated genotypic divergence (FST) to compare with phenotypic divergence (PST). KEY RESULTS: We found significant phenotypic variation in S. vulgaris along elevational gradients. Strong positive correlations were observed between floral color, leaf non-anthocyanidin flavonoid concentration, and elevation. Floral anthocyanin and leaf non-anthocyanidin flavonoid phenotypes negatively covaried with temperature and precipitation seasonality. Comparisons of PST to FST provided evidence for stabilizing selection on floral color among transects and divergent selection along the elevational gradient. CONCLUSIONS: Flavonoid production increases along elevational gradients in S. vulgaris, with clinal variation in calyx anthocyanins and increasing leaf non-anthocyanin flavonoid concentrations. Despite the photoprotective and antiherbivore properties of some flavonoids, flavonoid production in flowers and leaves was correlated with population microclimatic variables: temperature and precipitation. Taken together, the results suggest that different flavonoid groups are targeted by selection in different tissues and provide evidence for divergent patterns of selection for flavonoids between high and low elevations.


Asunto(s)
Flavonoides/metabolismo , Flores/química , Genotipo , Herbivoria , Hojas de la Planta/química , Silene/fisiología , Altitud , Antocianinas/metabolismo , Antibiosis , Ambiente , Francia , Pigmentación , Silene/genética , Rayos Ultravioleta
10.
Ann Bot ; 116(2): 201-11, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26070638

RESUMEN

BACKGROUND AND AIMS: Evolution of autonomous selfing may be advantageous because it allows for reproductive assurance. In co-flowering plants competing for pollinators, the least common and/or attractive could suffer pollen limitations. Silene niceensis and S. ramosissima are taxonomically related species sharing the same habitat, although S. ramosissima is less abundant and has a more restricted distribution. They also have the same a priori nocturnal pollinator syndrome, and show an overlapping flowering phenology. The aim of this study was to investigate whether a selfing strategy in S. ramosissima allows it to avoid pollinator competition and/or interspecific pollen transfer with S. niceensis, which would thus enable both species to reach high levels of fruit and seed set. METHODS: The breeding system, petal colour, flower life span and degree of overlap between male and female phases, floral visitor abundance and visitation rates were analysed in two sympatric populations of S. niceensis and S. ramosissima in southern Spain. KEY RESULTS: Autonomous selfing in S. ramosissima produced very high fruit and seed set, which was also similar to open-pollinated plants. Silene niceensis showed minimum levels of autonomous selfing, and pollen/ovule ratios were within the range expected for the breeding system. In contrast to S. niceensis, flower life span was much shorter in S. ramosissima, and male and female organs completely overlapped in space and time. Upper surface petals of both species showed differing brightness, chroma and hue. Flowers of S. niceensis were actively visited by moths, hawkmoths and syrphids, whereas those of S. ramosissima were almost never visited. CONCLUSIONS: The findings show that different breeding strategies exist between the sympatric co-flowering S. niceensis and S. ramosissima, the former specializing in crepuscular-nocturnal pollination and the latter mainly based on autonomous selfing. These two strategies allow both species to share the restricted dune habitat in which they exist, with a high female reproductive success due to the absence of pollinator competition and/or interspecific pollen flow.


Asunto(s)
Insectos/fisiología , Polinización/fisiología , Autofecundación/fisiología , Silene/fisiología , Simpatría/fisiología , Animales , Modelos Lineales , Modelos Biológicos , Óvulo Vegetal/fisiología , Polen/fisiología , España
11.
Am J Bot ; 102(10): 1703-20, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26437887

RESUMEN

PREMISE OF THE STUDY: Many arctic-alpine species have vast geographic ranges, but these may encompass substantial gaps whose origins are poorly understood. Here we address the phylogeographic history of Silene acaulis, a perennial cushion plant with a circumpolar distribution except for a large gap in Siberia. METHODS: We assessed genetic variation in a range-wide sample of 103 populations using plastid DNA (pDNA) sequences and AFLPs (amplified fragment length polymorphisms). We constructed a haplotype network and performed Bayesian phylogenetic analyses based on plastid sequences. We visualized AFLP patterns using principal coordinate analysis, identified genetic groups using the program structure, and estimated genetic diversity and rarity indices by geographic region. KEY RESULTS: The history of the main pDNA lineages was estimated to span several glaciations. AFLP data revealed a distinct division between Beringia/North America and Europe/East Greenland. These two regions shared only one of 17 pDNA haplotypes. Populations on opposite sides of the Siberian range gap (Ural Mountains and Chukotka) were genetically distinct and appear to have resulted from postglacial leading-edge colonizations. We inferred two refugia in North America (Beringia and the southern Rocky Mountains) and two in Europe (central-southern Europe and northern Europe/East Greenland). Patterns in the East Atlantic region suggested transoceanic long-distance dispersal events. CONCLUSIONS: Silene acaulis has a highly dynamic history characterized by vicariance, regional extinction, and recolonization, with persistence in at least four refugia. Long-distance dispersal explains patterns across the Atlantic Ocean, but we found no evidence of dispersal across the Siberian range gap.


Asunto(s)
Extinción Biológica , Dispersión de las Plantas , Polimorfismo Genético , Silene/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Regiones Árticas , Teorema de Bayes , ADN de Cloroplastos/genética , Datos de Secuencia Molecular , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Silene/genética
12.
J Chem Ecol ; 41(7): 622-30, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26085479

RESUMEN

Although the effect of herbivory on plant reproduction has been investigated in some detail, little is known about how herbivores affect floral signalling. Here, we investigated the effect of foliar herbivory by the African Cotton Leafworm (Spodoptera littoralis) on floral signalling and fruit set in the White Campion (Silene latifolia). We found no effects of herbivory on floral traits involved in visual signalling (flower number, corolla diameter, calyx length, petal length) or in amount of nectar produced. However, Spodoptera-infested plants emitted higher amounts of the two floral volatiles, (Z)-3-hexenyl acetate and ß-ocimene, than control plants. Open pollinated, infested plants also were found to produce more fruits than control plants, but only with nocturnal pollinators. Experimental addition of the two induced floral volatiles to non-infested Silene flowers also led to the production of more fruits with nocturnal pollination. This suggests that higher fruit production in herbivore-infested plants was caused by increased nocturnal pollinator attraction, mediated by the induced floral emission of these two volatiles. Our results show that the effects of herbivory on plant reproductive success are not necessarily detrimental, as plants can compensate herbivory with increased investment in pollinator attraction.


Asunto(s)
Flores/fisiología , Frutas/fisiología , Herbivoria , Polinización , Silene/fisiología , Spodoptera/fisiología , Acetatos/metabolismo , Monoterpenos Acíclicos , Alquenos/metabolismo , Animales , Compuestos Orgánicos Volátiles/metabolismo
13.
J Evol Biol ; 27(7): 1491-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24739043

RESUMEN

Neo-sex chromosomes, which form through the major restructuring of ancestral sex chromosome systems, have evolved in various taxa. Such restructuring often consists of the fusion of an autosome to an existing sex chromosome, resulting in novel sex chromosome formations (e.g. X1X2Y or XY1Y2.). Comparative studies are often made between restructured sex chromosome systems of closely related species, and here we evaluate the consequences of variable sex chromosome systems to hybrids. If neo-sex chromosomes are improperly inherited across species, this could lead to aberrant development and reproductive isolation. In this study, we examine the fate of neo-sex chromosomes in hybrids of the flowering plants Silene diclinis and Silene latifolia. Silene diclinis has a neo-sex chromosome system (XY1Y2) that is thought to have evolved from an ancestral XY system that is still present in S. latifolia. These species do not hybridize naturally, and improper sex chromosome inheritance could contribute to reproductive isolation. We investigated whether this major restructuring of sex chromosomes prevents their proper inheritance in a variety of hybrid crosses, including some F2 - and later-generation hybrids, with sex chromosome-linked, species-specific, polymorphic markers and chromosome squashes. We discovered that despite the differences in sex chromosomes that exist between these two species, proper segregation had occurred in hybrids that made it to flowering, including later-generation hybrids, indicating that neo-sex chromosome formation alone does not result in complete reproductive isolation between these two species. Additionally, hybrids with aberrant sex expression (e.g. neuter, hermaphrodite) also inherited the restructured sex chromosomes properly, highlighting that issues with sexual development in hybrids can be caused by intrinsic genetic incompatibility rather than improper sex chromosome inheritance.


Asunto(s)
Cromosomas de las Plantas , Hibridación Genética , Silene/genética , Evolución Biológica , Datos de Secuencia Molecular , Reproducción/fisiología , Aislamiento Reproductivo , Análisis de Secuencia de ADN , Silene/fisiología
14.
Ann Bot ; 113(7): 1257-63, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24681509

RESUMEN

BACKGROUND AND AIMS: Seed longevity, a fundamental plant trait for ex situ conservation and persistence in the soil of many species, varies across populations and generations that experience different climates. This study investigates the extent to which differences in seed longevity are due to genetic differences and/or modified by adaptive responses to environmental changes. METHODS: Seeds of two wild populations of Silene vulgaris from alpine (wA) and lowland (wL) locations and seeds originating from their cultivation in a lowland common garden for two generations (cA1, cL1, cA2 and cL2) were exposed to controlled ageing at 45 °C, 60 % relative humidity and regularly sampled for germination and relative mRNA quantification (SvHSP17.4 and SvNRPD12). KEY RESULTS: The parental plant growth environment affected the longevity of seeds with high plasticity. Seeds of wL were significantly longer lived than those of wA. However, when alpine plants were grown in the common garden, longevity doubled for the first generation of seeds produced (cA1). Conversely, longevity was similar in all lowland seed lots and did not increase in the second generation of seeds produced from alpine plants grown in the common garden (cA2). Analysis of parental effects on mRNA seed provisioning indicated that the accumulation of gene transcripts involved in tolerance to heat stress was highest in wL, cL1 and cL2, followed by cA1, cA2 and wA. CONCLUSIONS: Seed longevity has a genetic basis, but may show strong adaptive responses, which are associated with differential accumulation of mRNA via parental effects. Adaptive adjustments of seed longevity due to transgenerational plasticity may play a fundamental role in the survival and persistence of the species in the face of future environmental challenges. The results suggest that regeneration location may have important implications for the conservation of alpine plants held in seed banks.


Asunto(s)
Ambiente , Proteínas de Plantas/genética , Semillas/fisiología , Silene/fisiología , Adaptación Biológica , Cambio Climático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Italia , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética , Semillas/crecimiento & desarrollo , Silene/genética , Silene/crecimiento & desarrollo
15.
Am J Bot ; 100(6): 1148-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23720431

RESUMEN

PREMISE OF THE STUDY: Pollinating seed predators are models for the study of mutualisms. These insects have dual effects on host-plant fitness, through pollination as adults and flower and fruit predation as larvae. A rarely examined question is whether pollinating seed-predator oviposition choices are influenced by plant floral and size traits and the potential consequences of oviposition for host-plant reproduction. • METHODS: We quantified oviposition by a pollinating seed predator, Hadena ectypa, on its host, Silene stellata, to determine if oviposition was associated with specific plant traits and whether oviposition was significantly correlated with fruit initiation or flower and fruit predation over three years. We also quantified whether stigmatic pollen loads of flowers visited by Hadena that both fed on nectar and oviposited were greater than when Hadena only fed on nectar. • KEY RESULTS: Hadena had significant preference for plants having flowers with long corolla tubes in all three years. Moth oviposition was correlated with other traits only in some years. Oviposition did not increase stigmatic pollen loads. We observed significant positive relationships between both oviposition and fruit initiation and oviposition and flower/fruit predation. • CONCLUSIONS: Hadena ectypa oviposition choices were based consistently on floral tube length differences among individuals, and the consequences of oviposition include both fruit initiation (due to pollination while feeding on nectar prior to oviposition) and larval flower/fruit predation. The positive association between oviposition and fruit initiation may explain the long-term maintenance of facultative pollinating seed-predator interactions.


Asunto(s)
Mariposas Nocturnas/fisiología , Oviposición/fisiología , Polinización/fisiología , Silene/fisiología , Animales , Conducta Animal , Flores , Polen , Semillas
16.
Physiol Plant ; 147(1): 88-100, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22420836

RESUMEN

Frost resistance of reproductive vs aboveground vegetative structures was determined for six common European high alpine plant species that can be exposed to frosts throughout their whole reproductive cycle. Freezing tests were carried out in the bud, anthesis and fruit stage. Stigma and style, ovary, placenta, ovule, flower stalk/peduncle and, in Ranunculus glacialis, the receptacle were separately investigated. In all species, the vegetative organs tolerated on an average 2-5 K lower freezing temperatures than the most frost-susceptible reproductive structures that differed in their frost resistance. In almost all species, stigma, style and the flower stalk/peduncle were the most frost-susceptible reproductive structures. Initial frost damage (LT10) to the most susceptible reproductive structure usually occurred between -2 and -4°C independent of the reproductive stage. The median LT50 across species for stigma and style ranged between -3.4 and -3.7°C and matched the mean ice nucleation temperature (-3.7 ± 1.4°C). In R. glacialis, the flower stalk was the most frost-susceptible structure (-5.4°C), and was in contrast to the other species ice-tolerant. The ovule and the placenta were usually the most frost-resistant structures. During reproductive development, frost resistance (LT50) of single reproductive structures mostly showed no significant change. However, significant increases or decreases were also observed (2.1 ± 1.2 K). Reproductive tissues of nival species generally tolerated lower temperatures than species occurring in the alpine zone. The low frost resistance of reproductive structures before, during and shortly after anthesis increases the probability of frost damage and thus, may restrict successful sexual plant reproduction with increasing altitude.


Asunto(s)
Aclimatación , Caryophyllaceae/fisiología , Frío , Flores/fisiología , Ranunculus/fisiología , Saxifragaceae/fisiología , Silene/fisiología , Altitud , Congelación
17.
Conserv Biol ; 27(3): 552-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23458476

RESUMEN

Short-term surveys are useful in conservation of species if they can be used to reliably predict the long-term fate of populations. However, statistical evaluations of reliability are rare. We studied how well short-term demographic data (1999-2002) of tartar catchfly (Silene tatarica), a perennial riparian plant, projected the fate and growth of 23 populations of this species up to the year 2010. Surveyed populations occurred along a river with natural flood dynamics and along a regulated river. Riparian plant populations are affected by flooding, which maintains unvegetated shores, while forest succession proceeds in areas with little flooding. Flooding is less severe along the regulated river, and vegetation overgrowth reduces abundance of tartar catchfly on unvegetated shores. We built matrix models to calculate population growth rates and estimated times to population extinction in natural and in regulated rivers, 13 and 10 populations, respectively. Models predicted population survival well (model predictions matched observed survival in 91% of populations) and accurately predicted abundance increases and decreases in 65% of populations. The observed and projected population growth rates differed significantly in all but 3 populations. In most cases, the model overestimated population growth. Model predictions did not improve when data from more years were used (1999-2006). In the regulated river, the poorest model predictions occurred in areas where cover of other plant species changed the fastest. Although vegetation cover increased in most populations, it decreased in 4 populations along the natural river. Our results highlight the need to combine disturbance and succession dynamics in demographic models and the importance of habitat management for species survival along regulated rivers.


Asunto(s)
Silene/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Modelos Teóricos , Densidad de Población , Dinámica Poblacional , Ríos , Factores de Tiempo
18.
Proc Biol Sci ; 279(1726): 91-100, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21561968

RESUMEN

Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.


Asunto(s)
Polinización , Polimorfismo Genético , Silene/fisiología , Flores , Francia , Aptitud Genética , Germinación , Endogamia , Repeticiones de Microsatélite , Fenotipo , Reacción en Cadena de la Polimerasa , Reproducción , Silene/genética
19.
J Evol Biol ; 25(3): 461-72, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22168583

RESUMEN

Interactions, antagonistic or mutualistic, can exert selection on plant traits. We explored the role of Hadena bicruris, a pollinating seed predator, as a selective agent on its host, the dioecious plant Silene latifolia. We exposed females from artificial-selection lines (many, small flowers (SF) vs. few, large flowers (LF)) to this moth. Infestation did not differ significantly between lines, but the odds of attacked fruits aborting were higher in SF females. We partitioned selection between that caused by moth attack and that resulting from all other factors. In both lines, selection via moth attack for fewer, smaller flowers contrasted with selection via other factors for more flowers. In LF females, selection via the two components was strongest and selection via moth attack also favoured increased fruit abortion. This suggests that the moths act as more of a selective force on flower size and number via their predating than their pollinating role.


Asunto(s)
Conducta Alimentaria/fisiología , Flores/fisiología , Mariposas Nocturnas/fisiología , Polinización/fisiología , Selección Genética , Silene/genética , Animales , Femenino , Frutas/crecimiento & desarrollo , Modelos Lineales , Polinización/genética , Semillas , Silene/fisiología
20.
Ann Bot ; 110(6): 1221-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23002271

RESUMEN

BACKGROUND AND AIMS: In mountain plant populations, local adaptation has been described as one of the main responses to climate warming, allowing plants to persist under stressful conditions. This is especially the case for marginal populations at their lowest elevation, as they are highly vulnerable. Adequate levels of genetic diversity are required for selection to take place, while high levels of altitudinal gene flow are seen as a major limiting factor potentially precluding local adaptation processes. Thus, a compromise between genetic diversity and gene flow seems necessary to guarantee persistence under oncoming conditions. It is therefore critical to determine if gene flow occurs preferentially between mountains at similar altitudinal belts, promoting local adaptation at the lowest populations, or conversely along altitude within each mountain. METHODS: Microsatellite markers were used to unravel genetic diversity and population structure, inbreeding and gene flow of populations at two nearby altitudinal gradients of Silene ciliata, a Mediterranean high-mountain cushion plant. KEY RESULTS: Genetic diversity and inbreeding coefficients were similar in all populations. Substantial gene flow was found both along altitudinal gradients and horizontally within each elevation belt, although greater values were obtained along altitudinal gradients. Gene flow may be responsible for the homogeneous levels of genetic diversity found among populations. Bayesian cluster analyses also suggested that shifts along altitudinal gradients are the most plausible scenario. CONCLUSIONS: Past population shifts associated with glaciations and interglacial periods in temperate mountains may partially explain current distributions of genetic diversity and population structure. In spite of the predominance of gene flow along the altitudinal gradients, local genetic differentiation of one of the lower populations together with the detection of one outlier locus might support the existence of different selection forces at low altitudes.


Asunto(s)
Adaptación Fisiológica/genética , Altitud , Flujo Génico , Estructuras Genéticas , Variación Genética , Silene/genética , Análisis de Varianza , Teorema de Bayes , Cambio Climático , Genética de Población , Geografía , Endogamia , Región Mediterránea , Repeticiones de Microsatélite/genética , Silene/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA