Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.026
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 180(3): 454-470.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004459

RESUMEN

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Interacciones Microbiota-Huesped/genética , Microbiota/genética , Polimorfismo de Nucleótido Simple , Piel/microbiología , Staphylococcus epidermidis/genética , Adulto , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Staphylococcus epidermidis/aislamiento & purificación , Staphylococcus epidermidis/patogenicidad , Virulencia/genética , Adulto Joven
2.
Cell ; 183(6): 1562-1571.e12, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33306955

RESUMEN

Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.


Asunto(s)
Bacterias/metabolismo , Factores Inmunológicos/metabolismo , Ixodes/fisiología , Piel/microbiología , Simbiosis , Animales , Antibacterianos/farmacología , Biocatálisis , Pared Celular/metabolismo , Conducta Alimentaria , Femenino , Tracto Gastrointestinal/metabolismo , Interacciones Huésped-Patógeno , Ratones , Modelos Moleculares , Peptidoglicano/metabolismo , Filogenia , Saliva/metabolismo , Glándulas Salivales/metabolismo , Staphylococcus epidermidis/fisiología , Homología Estructural de Proteína , Especificidad por Sustrato , Regulación hacia Arriba
3.
Cell ; 164(4): 710-21, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26853474

RESUMEN

Type III-A CRISPR-Cas systems defend prokaryotes against viral infection using CRISPR RNA (crRNA)-guided nucleases that perform co-transcriptional cleavage of the viral target DNA and its transcripts. Whereas DNA cleavage is essential for immunity, the function of RNA targeting is unknown. Here, we show that transcription-dependent targeting results in a sharp increase of viral genomes in the host cell when the target is located in a late-expressed phage gene. In this targeting condition, mutations in the active sites of the type III-A RNases Csm3 and Csm6 lead to the accumulation of the target phage mRNA and abrogate immunity. Csm6 is also required to provide defense in the presence of mutated phage targets, when DNA cleavage efficiency is reduced. Our results show that the degradation of phage transcripts by CRISPR-associated RNases ensures robust immunity in situations that lead to a slow clearance of the target DNA.


Asunto(s)
Sistemas CRISPR-Cas , Estabilidad del ARN , Fagos de Staphylococcus/genética , Staphylococcus epidermidis/inmunología , Proteínas Bacterianas , ADN Viral/genética , ARN Viral/metabolismo , Fagos de Staphylococcus/fisiología , Staphylococcus epidermidis/virología , Transcripción Genética
4.
Cell ; 161(5): 1164-1174, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25959775

RESUMEN

Immune systems must recognize and destroy different pathogens that threaten the host. CRISPR-Cas immune systems protect prokaryotes from viral and plasmid infection utilizing small CRISPR RNAs that are complementary to the invader's genome and specify the targets of RNA-guided Cas nucleases. Type III CRISPR-Cas immunity requires target transcription, and whereas genetic studies demonstrated DNA targeting, in vitro data have shown crRNA-guided RNA cleavage. The molecular mechanism behind these disparate activities is not known. Here, we show that transcription across the targets of the Staphylococcus epidermidis type III-A CRISPR-Cas system results in the cleavage of the target DNA and its transcripts, mediated by independent active sites within the Cas10-Csm ribonucleoprotein effector complex. Immunity against plasmids and DNA viruses requires DNA, but not RNA, cleavage activity. Our studies reveal a highly versatile mechanism of CRISPR immunity that can defend microorganisms against diverse DNA and RNA invaders.


Asunto(s)
Sistemas CRISPR-Cas , Staphylococcus epidermidis/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , ADN/metabolismo , ARN/genética , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Staphylococcus epidermidis/inmunología , Staphylococcus epidermidis/virología , Transcripción Genética
5.
Cell ; 161(5): 964-966, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000476

RESUMEN

Seminal studies showed that CRISPR-Cas systems provide adaptive immunity in prokaryotes and promising gene-editing tools from bacteria to humans. Yet, reports diverged on whether some CRISPR systems naturally target DNA or RNA. Here, Samai and colleagues unify the studies, showing that a single type III CRISPR-Cas system cleaves both DNA and RNA targets, independently.


Asunto(s)
Sistemas CRISPR-Cas , Staphylococcus epidermidis/metabolismo
6.
Nature ; 592(7855): 611-615, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828299

RESUMEN

Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors1. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids2 and bacteriophages3, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA4,5; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.


Asunto(s)
Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Mutagénesis , Mutación , Staphylococcus/genética , Antibacterianos/farmacología , Bacteriófagos/clasificación , Bacteriófagos/fisiología , Proteínas Asociadas a CRISPR/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desoxirribonucleasas/metabolismo , Farmacorresistencia Microbiana/efectos de los fármacos , Respuesta SOS en Genética/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Staphylococcus/inmunología , Staphylococcus/virología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/virología , Factores de Tiempo
7.
Mol Cell ; 73(2): 278-290.e4, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503774

RESUMEN

Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.


Asunto(s)
Autoinmunidad , Proteínas Bacterianas/inmunología , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ARN Bacteriano/inmunología , Autotolerancia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Cinética , Microscopía Fluorescente , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transducción de Señal , Imagen Individual de Molécula/métodos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus epidermidis/enzimología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/inmunología , Relación Estructura-Actividad
8.
PLoS Pathog ; 20(8): e1012056, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39208402

RESUMEN

The Staphylococcus sp. are a dominant part of the human skin microbiome and present across the body. Staphylococcus epidermidis is a ubiquitous skin commensal, while S. aureus is thought to colonize at least 30% of the population. S. aureus are not only colonizers but a leading cause of skin and soft tissue infections and a critical healthcare concern. To understand how healthy human skin may differentiate commensal bacteria, such as S. epidermidis, from the potential pathogen methicillin-resistant S. aureus (MRSA), we use ex vivo human skin models that allow us to study this host-bacterial interaction in the most clinically relevant environment. Our work highlights the role of the outer stratum corneum as a protective physical barrier against invasion by colonizing Staphylococci. We show how the structural cells of the skin can internalize and respond to different Staphylococci with increasing sensitivity. In intact human skin, a discriminatory IL-1ß response was identified, while disruption of the protective stratum corneum triggered an increased and more diverse immune response. We identified and localized tissue resident Langerhans cells (LCs) as a potential source of IL-1ß and go on to show a dose-dependent response of MUTZ-LCs to S. aureus but not S. epidermidis. This suggests an important role of LCs in sensing and discriminating between bacteria in healthy human skin, particularly in intact skin and provides a detailed snapshot of how human skin differentiates between friend and potential foe. With the rise in antibiotic resistance, understanding the innate immune response of healthy skin may help us find ways to enhance or manipulate these natural defenses to prevent invasive infection.


Asunto(s)
Interleucina-1beta , Piel , Staphylococcus aureus , Staphylococcus epidermidis , Humanos , Interleucina-1beta/metabolismo , Piel/microbiología , Piel/inmunología , Staphylococcus aureus/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Células de Langerhans/inmunología , Células de Langerhans/microbiología , Staphylococcus aureus Resistente a Meticilina/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/inmunología , Microbiota/inmunología
9.
Proc Natl Acad Sci U S A ; 120(47): e2310585120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956283

RESUMEN

Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain-specific manners. To unlock the potential of engineering skin microbial communities, we aim to characterize the diversity of this genus within the context of the skin environment. We reanalyzed an extant 16S rRNA amplicon dataset obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant staphylococcal species present in all volunteers and were detected at all body sites. Pan-genome analysis of isolates from these three species revealed that the genus-core was dominated by central metabolism genes. Species-restricted-core genes encoded known host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.


Asunto(s)
Piel , Staphylococcus , Humanos , Staphylococcus/genética , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Staphylococcus epidermidis/genética , Genómica
10.
Mol Microbiol ; 121(3): 470-480, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37898563

RESUMEN

Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus , Humanos , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Macrófagos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética
11.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012978

RESUMEN

Preventing pathogenic viral and bacterial transmission in the human environment is critical, especially in potential outbreaks that may be caused by the release of ancient bacteria currently trapped in the permafrost. Existing commercial disinfectants present issues such as a high carbon footprint. This study proposes a sustainable alternative, a bioliquid derived from biomass prepared by hydrothermal liquefaction. Results indicate a high inactivation rate of pathogenic virus and bacteria by the as-prepared bioliquid, such as up to 99.99% for H1N1, H5N1, H7N9 influenza A virus, and Bacillus subtilis var. niger spores and 99.49% for Bacillus anthracis Inactivation of Escherichia coli and Staphylococcus epidermidis confirmed that low-molecular-weight and low-polarity compounds in bioliquid are potential antibacterial components. High temperatures promoted the production of antibacterial substances via depolymerization and dehydration reactions. Moreover, bioliquid was innoxious as confirmed by the rabbit skin test, and the cost per kilogram of the bioliquid was $0.04427, which is notably lower than that of commercial disinfectants. This study demonstrates the potential of biomass to support our biosafety with greater environmental sustainability.


Asunto(s)
Biomasa , Contención de Riesgos Biológicos , Ambiente , Energía Renovable , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Humanos , Pruebas de Sensibilidad Microbiana , Peso Molecular , Pandemias , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/ultraestructura
12.
Proc Natl Acad Sci U S A ; 119(26): e2200348119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727974

RESUMEN

Immune checkpoint inhibitors (ICIs) are essential components of the cancer therapeutic armamentarium. While ICIs have demonstrated remarkable clinical responses, they can be accompanied by immune-related adverse events (irAEs). These inflammatory side effects are of unclear etiology and impact virtually all organ systems, with the most common being sites colonized by the microbiota such as the skin and gastrointestinal tract. Here, we establish a mouse model of commensal bacteria-driven skin irAEs and demonstrate that immune checkpoint inhibition unleashes commensal-specific inflammatory T cell responses. These aberrant responses were dependent on production of IL-17 by commensal-specific T cells and induced pathology that recapitulated the cutaneous inflammation seen in patients treated with ICIs. Importantly, aberrant T cell responses unleashed by ICIs were sufficient to perpetuate inflammatory memory responses to the microbiota months following the cessation of treatment. Altogether, we have established a mouse model of skin irAEs and reveal that ICIs unleash aberrant immune responses against skin commensals, with long-lasting inflammatory consequences.


Asunto(s)
Dermatitis , Inhibidores de Puntos de Control Inmunológico , Microbiota , Animales , Dermatitis/inmunología , Dermatitis/microbiología , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunidad/efectos de los fármacos , Interleucina-17/metabolismo , Ratones , Microbiota/efectos de los fármacos , Microbiota/inmunología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/inmunología , Simbiosis/efectos de los fármacos , Linfocitos T/inmunología
13.
Proc Natl Acad Sci U S A ; 119(31): e2123017119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881802

RESUMEN

Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.


Asunto(s)
Interacciones Huésped-Patógeno , Neutrófilos , Infecciones Estafilocócicas , Staphylococcus aureus , Bacteriemia/inmunología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Neutrófilos/inmunología , Neutrófilos/microbiología , Proteínas Citotóxicas Formadoras de Poros/genética , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus epidermidis/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Nano Lett ; 24(30): 9155-9162, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38917338

RESUMEN

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.


Asunto(s)
Escherichia coli , Grafito , Luz , Polietilenos , Staphylococcus epidermidis , Titanio , Grafito/química , Grafito/farmacología , Grafito/efectos de la radiación , Titanio/química , Titanio/farmacología , Polietilenos/química , Polietilenos/efectos de la radiación , Polietilenos/farmacología , Staphylococcus epidermidis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta
15.
J Biol Chem ; 299(3): 102936, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702253

RESUMEN

Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.


Asunto(s)
Proteínas Bacterianas , Modelos Moleculares , Dominios Proteicos , Staphylococcus aureus , Humanos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lectinas/química , Lectinas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Dominios Proteicos/fisiología , Estructura Terciaria de Proteína , Unión Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli , Células Epiteliales/microbiología
16.
J Am Chem Soc ; 146(23): 15941-15954, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832917

RESUMEN

The pathogen Staphylococcus epidermidis uses a chemical signaling process, i.e., quorum sensing (QS), to form robust biofilms and cause human infection. Many questions remain about QS in S. epidermidis, as it uses this intercellular communication pathway to both negatively and positively regulate virulence traits. Herein, we report synthetic multigroup agonists and antagonists of the S. epidermidis accessory gene regulator (agr) QS system capable of potent superactivation and complete inhibition, respectively. These macrocyclic peptides maintain full efficacy across the three major agr specificity groups, and their activity can be "mode-switched" from agonist to antagonist via subtle residue-specific structural changes. We describe the design and synthesis of these non-native peptides and demonstrate that they can appreciably decrease biofilm formation on abiotic surfaces, underscoring the potential for agr agonism as a route to block S. epidermidis virulence. Additionally, we show that both the S. epidermidis agonists and antagonists are active in S. aureus, another common pathogen with a related agr system, yet only as antagonists. This result not only revealed one of the most potent agr inhibitors known in S. aureus but also highlighted differences in the mechanisms of agr agonism and antagonism between these related bacteria. Finally, our investigations reveal unexpected inhibitory behavior for certain S. epidermidis agr agonists at sub-activating concentrations, an observation that can be leveraged for the design of future probes with enhanced potencies. Together, these peptides provide a powerful tool set to interrogate the role of QS in S. epidermidis infections and in Staphylococcal pathogenicity in general.


Asunto(s)
Biopelículas , Percepción de Quorum , Staphylococcus epidermidis , Percepción de Quorum/efectos de los fármacos , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
17.
Biochem Biophys Res Commun ; 691: 149277, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38029543

RESUMEN

The human skin microbiome consists of many species of bacteria, including Staphylococcus aureus and S. epidermidis. Individuals with atopic dermatitis (AD) have an increased relative abundance of S. aureus, which exacerbates the inflammation of AD. Although S. epidermidis, a main component of healthy skin microbiota, inhibits the growth of S. aureus, the balance between S. epidermidis and S. aureus is disrupted in the skin of individuals with AD. In this study, we found that Citrobacter koseri isolated from patients with AD produces substances that inhibit the growth of S. epidermidis. Heat-treated culture supernatant (CS) of C. koseri inhibited the growth of S. epidermidis but not S. aureus. The genome of C. koseri has gene clusters related to siderophores and the heat-treated CS of C. koseri contained a high concentration of siderophores compared with the control medium. The inhibitory activity of C. koseri CS against the growth of S. epidermidis was decreased by the addition of iron, but not copper or zinc. Deferoxamine, an iron-chelating agent, also inhibited the growth of S. epidermidis, but not that of S. aureus. These findings suggest that C. koseri inhibits the growth of S. epidermidis by interfering with its iron utilization.


Asunto(s)
Citrobacter koseri , Dermatitis Atópica , Humanos , Staphylococcus epidermidis , Staphylococcus aureus , Hierro , Sideróforos/farmacología
18.
Small ; 20(38): e2311546, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38766975

RESUMEN

Bacterial adhesion to stainless steel, an alloy commonly used in shared settings, numerous medical devices, and food and beverage sectors, can give rise to serious infections, ultimately leading to morbidity, mortality, and significant healthcare expenses. In this study, Cu-coated nanotextured stainless steel (nSS) fabrication have been demonstrated using electrochemical technique and its potential as an antibiotic-free biocidal surface against Gram-positive and negative bacteria. As nanotexture and Cu combine for dual methods of killing, this material should not contribute to drug-resistant bacteria as antibiotic use does. This approach involves applying a Cu coating on nanotextured stainless steel, resulting in an antibacterial activity within 30 min. Comprehensive characterization of the surface revealing that the Cu coating consists of metallic Cu and oxidized states (Cu2+ and Cu+), has been performed by this study. Cu-coated nSS induces a remarkable reduction of 97% in Gram-negative Escherichia coli and 99% Gram-positive Staphylococcus epidermidis bacteria. This material has potential to be used to create effective, scalable, and sustainable solutions to prevent bacterial infections caused by surface contamination without contributing to antibiotic resistance.


Asunto(s)
Antibacterianos , Cobre , Escherichia coli , Acero Inoxidable , Acero Inoxidable/química , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus epidermidis/efectos de los fármacos , Propiedades de Superficie , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Adhesión Bacteriana/efectos de los fármacos
19.
RNA ; 28(8): 1074-1088, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618430

RESUMEN

CRISPR-Cas systems are functionally diverse prokaryotic antiviral defense systems, which encompass six distinct types (I-VI) that each encode different effector Cas nucleases with distinct nucleic acid cleavage specificities. By harnessing the unique attributes of the various CRISPR-Cas systems, a range of innovative CRISPR-based DNA and RNA targeting tools and technologies have been developed. Here, we exploit the ability of type III-A CRISPR-Cas systems to carry out RNA-guided and sequence-specific target RNA cleavage for establishment of research tools for post-transcriptional control of gene expression. Type III-A systems from three bacterial species (L. lactis, S. epidermidis, and S. thermophilus) were each expressed on a single plasmid in E. coli, and the efficiency and specificity of gene knockdown was assessed by northern blot and transcriptomic analysis. We show that engineered type III-A modules can be programmed using tailored CRISPR RNAs to efficiently knock down gene expression of both coding and noncoding RNAs in vivo. Moreover, simultaneous degradation of multiple cellular mRNA transcripts can be directed by utilizing a CRISPR array expressing corresponding gene-targeting crRNAs. Our results demonstrate the utility of distinct type III-A modules to serve as specific and effective gene knockdown platforms in heterologous cells. This transcriptome engineering technology has the potential to be further refined and exploited for key applications including gene discovery and gene pathway analyses in additional prokaryotic and perhaps eukaryotic cells and organisms.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Técnicas de Silenciamiento del Gen , ARN/genética , Staphylococcus epidermidis , Tecnología
20.
J Antimicrob Chemother ; 79(5): 1045-1050, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507272

RESUMEN

OBJECTIVES: Staphylococcus epidermidis bone and joint infections (BJIs) on material are often difficult to treat. The activity of delafloxacin has not yet been studied on S. epidermidis in this context. The aim of this study was to assess its in vitro activity compared with other fluoroquinolones, against a large collection of S. epidermidis clinical strains. METHODS: We selected 538 S. epidermidis strains isolated between January 2015 and February 2023 from six French teaching hospitals. One hundred and fifty-two strains were ofloxacin susceptible and 386 were ofloxacin resistant. Identifications were performed by MS and MICs were determined using gradient concentration strips for ofloxacin, levofloxacin, moxifloxacin and delafloxacin. RESULTS: Ofloxacin-susceptible strains were susceptible to all fluoroquinolones. Resistant strains had higher MICs of all fluoroquinolones. Strains resistant to ofloxacin (89.1%) still showed susceptibility to delafloxacin when using the Staphylococcus aureus 2021 CA-SFM/EUCAST threshold of 0.25 mg/L. In contrast, only 3.9% of the ofloxacin-resistant strains remained susceptible to delafloxacin with the 0.016 mg/L S. aureus breakpoint according to CA-SFM/EUCAST guidelines in 2022. The MIC50 was 0.094 mg/L and the MIC90 was 0.38 mg/L. CONCLUSIONS: We showed low delafloxacin MICs for ofloxacin-susceptible S. epidermidis strains and a double population for ofloxacin-resistant strains. Despite the absence of breakpoints for S. epidermidis, delafloxacin may be an option for the treatment of complex BJI, including strains with MICs of ≤0.094 mg/L, leading to 64% susceptibility. This study underlines the importance for determining specific S. epidermidis delafloxacin breakpoints for the management of BJI on material.


Asunto(s)
Antibacterianos , Fluoroquinolonas , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus epidermidis , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/aislamiento & purificación , Humanos , Fluoroquinolonas/farmacología , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Estudios Retrospectivos , Ofloxacino/farmacología , Levofloxacino/farmacología , Farmacorresistencia Bacteriana , Moxifloxacino/farmacología , Francia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA