Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(5): 2265-2267, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964808

RESUMEN

A 194-cm-long total-body positron emission tomography/computed tomography (PET/CT) scanner (uEXPLORER), has been constructed to offer a transformative platform for human radiotracer imaging in clinical research and healthcare. Its total-body coverage and exceptional sensitivity provide opportunities for innovative studies of physiology, biochemistry, and pharmacology. The objective of this study is to develop a method to perform ultrahigh (100 ms) temporal resolution dynamic PET imaging by combining advanced dynamic image reconstruction paradigms with the uEXPLORER scanner. We aim to capture the fast dynamics of initial radiotracer distribution, as well as cardiac motion, in the human body. The results show that we can visualize radiotracer transport in the body on timescales of 100 ms and obtain motion-frozen images with superior image quality compared to conventional methods. The proposed method has applications in studying fast tracer dynamics, such as blood flow and the dynamic response to neural modulation, as well as performing real-time motion tracking (e.g., cardiac and respiratory motion, and gross body motion) without any external monitoring device (e.g., electrocardiogram, breathing belt, or optical trackers).


Asunto(s)
Imagen Molecular/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación , Fluorodesoxiglucosa F18/administración & dosificación , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Trazadores Radiactivos
2.
BMC Cancer ; 21(1): 62, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446147

RESUMEN

BACKGROUND: The superior accuracy and sensitivity of 18F-FDG-PET/CT in comparison to morphological imaging alone leads to an upstaging in up to 30% of lymphoma patients. Novel digital PET/CT scanners might enable to reduce administered tracer activity or scan time duration while maintaining diagnostic performance; this might allow for a higher patient throughput or a reduced radiation exposure, respectively. In particular, the radiation exposure reduction is of interest due to the often young age and high remission rate of lymphoma patients. METHODS: Twenty patients with (suspected) lymphoma (6 for initial staging, 12 after systemic treatment, 2 in suspicion of recurrence) sequentially underwent 18F-FDG-PET/CT examinations on a digital PET/CT (Siemens Biograph Vision) with a total scan time duration of 15 min (reference acquisition protocol) and 5 min (reduced acquisition protocol) using continuous-bed-motion. Both data sets were reconstructed using either standalone time of flight (TOF) or in combination with point spread function (PSF), each with 2 and 4 iterations. Lesion detectability by blinded assessment (separately for supra- and infradiaphragmal nodal lesions and for extranodal lesions), lesion image quantification, and image noise were used as metrics to assess diagnostic performance. Additionally, Deauville Score was compared for all patients after systemic treatment. RESULTS: All defined regions were correctly classified in the images acquired with reduced emission time, and therefore, no changes in staging were observed. Lesion quantification was acceptable, that is, mean absolute percentage deviation of maximum and peak standardized uptake values were 6.8 and 6.4% (derived from 30 lesions). A threefold reduction of scan time duration led to an increase in image noise from 7.1 to 11.0% (images reconstructed with 4 iterations) and from 4.7 to 7.2% (images reconstructed with 2 iterations). No deviations in Deauville Score were observed. CONCLUSION: These results suggest that scan time duration or administered tracer activity can be reduced threefold without compromising diagnostic performance. Especially a reduction of administered activity might allow for a lower radiation exposure and better health economics. Larger trials are warranted to confirm our results.


Asunto(s)
Fluorodesoxiglucosa F18/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Linfoma/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Linfoma/diagnóstico por imagen , Linfoma/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Adulto Joven
3.
Proc Natl Acad Sci U S A ; 115(1): 174-179, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255046

RESUMEN

Detection and quantification of brown adipose tissue (BAT) mass remains a major challenge, as current tomographic imaging techniques are either nonspecific or lack the necessary resolution to quantify BAT mass, especially in obese phenotypes, in which this tissue may be present but inactive. Here, we report quantification of BAT mass by xenon-enhanced computed tomography. We show that, during stimulation of BAT thermogenesis, the lipophilic gas xenon preferentially accumulates in BAT, leading to a radiodensity enhancement comparable to that seen in the lungs. This enhancement is mediated by a selective reduction in BAT vascular resistance, which greatly increases vascular perfusion of BAT. This enhancement enables precise identification and quantification of BAT mass not only in lean, but also in obese, mouse phenotypes, in which this tissue is invisible to conventional tomographic imaging techniques. The method is developed and validated in rodents and then applied in macaques to assess its feasibility in larger species.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Xenón , Animales , Macaca , Ratones Obesos , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación
4.
Eur Heart J ; 40(24): 1975-1986, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-30060039

RESUMEN

Artificial intelligence (AI) has transformed key aspects of human life. Machine learning (ML), which is a subset of AI wherein machines autonomously acquire information by extracting patterns from large databases, has been increasingly used within the medical community, and specifically within the domain of cardiovascular diseases. In this review, we present a brief overview of ML methodologies that are used for the construction of inferential and predictive data-driven models. We highlight several domains of ML application such as echocardiography, electrocardiography, and recently developed non-invasive imaging modalities such as coronary artery calcium scoring and coronary computed tomography angiography. We conclude by reviewing the limitations associated with contemporary application of ML algorithms within the cardiovascular disease field.


Asunto(s)
Técnicas de Imagen Cardíaca/instrumentación , Enfermedades Cardiovasculares/diagnóstico por imagen , Insuficiencia Cardíaca/diagnóstico por imagen , Aprendizaje Automático/normas , Algoritmos , Inteligencia Artificial/normas , Calcio/metabolismo , Angiografía por Tomografía Computarizada/instrumentación , Vasos Coronarios/diagnóstico por imagen , Ecocardiografía/instrumentación , Electrocardiografía/instrumentación , Humanos , Redes Neurales de la Computación , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Sensibilidad y Especificidad , Tomografía Computarizada de Emisión de Fotón Único/instrumentación
5.
J Appl Clin Med Phys ; 21(1): 158-165, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31816183

RESUMEN

Continuous bed motion (CBM) was recently introduced as an alternative to step-and-shoot (SS) mode for PET/CT data acquisition. In CBM, the patient is continuously advanced into the scanner at a preset speed, whereas in SS, the patient is imaged in overlapping bed positions. Previous investigations have shown that patients preferred CBM over SS for PET data acquisition. In this study, we investigated the effect of CBM versus SS on patient breathing and respiratory motion correction. One hundred patients referred for PET/CT were scanned using a Siemens mCT scanner. Patient respiratory waveforms were recorded using an Anzai system and analyzed using four methods: Methods 1 and 2 measured the coefficient of variation (COV) of the respiratory cycle duration (RCD) and amplitude (RCA). Method 3 measured the respiratory frequency signal prominence (RSP) and method 4 measured the width of the HDChest optimal gate (OG) window when using a 35% duty cycle. Waveform analysis was performed over the abdominothoracic region which exhibited the greatest respiratory motion and the results were compared between CBM and SS. Respiratory motion correction was assessed by comparing the ratios of SUVmax, SUVpeak, and CNR of focal FDG uptake, as well as Radiologists' visual assessment of corresponding image quality of motion corrected and uncorrected images for both acquisition modes. The respiratory waveforms analysis showed that the RCD and RCA COV were 3.7% and 33.3% lower for CBM compared to SS, respectively, while the RSP and OG were 30.5% and 2.0% higher, respectively. Image analysis on the other hand showed that SUVmax, SUVpeak, and CNR were 8.5%, 4.5%, and 3.4% higher for SS compared to CBM, respectively, while the Radiologists' visual comparison showed similar image quality between acquisition modes. However, none of the results showed statistically significant differences between SS and CBM, suggesting that motion correction is not impacted by acquisition mode.


Asunto(s)
Movimiento , Neoplasias/radioterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Respiración , Técnicas de Imagen Sincronizada Respiratorias/normas , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Pronóstico , Estudios Prospectivos , Radiofármacos/metabolismo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos
6.
Hell J Nucl Med ; 23(2): 201-203, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32716411

RESUMEN

Radio-guided surgery using an intra-operative positron emission tomography (PET) probe in recurrent thyroid cancer (RTC) can be a useful method for tumor localization, verification of complete excision and to decrease operation time. We describe a case of RTC whose serum thyroglobulin (Tg) level was 5.6ng/mL. Preoperative fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) revealed two focal abnormalities in the anterior tracheal and right upper mediastinal regions and a handheld gamma probe was used intraoperatively to identify the hot areas seen on PET scan. Postoperative 18F-FDG PET/CT imaging after tumor excision was normal. This case shows that recurrent tumor can be localized correctly using 18F-FDG PET/CT and a surgical gamma probe.


Asunto(s)
Fluorodesoxiglucosa F18 , Mano , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Periodo Preoperatorio , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/cirugía , Humanos , Periodo Intraoperatorio , Masculino , Persona de Mediana Edad , Recurrencia
7.
J Labelled Comp Radiopharm ; 62(5): 209-214, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30861162

RESUMEN

We report initial experience in synthesis of (2S,4R)-4-[18 F]fluoroglutamine, [18 F]FGln, which has been used as a tool for monitoring glutamine metabolism in cancer patients. [18 F]FGln was prepared by a fully automated PET-MF-2V-IT-I synthesizer under GMP-compliant conditions for routine clinical studies. The total radiosynthesis time was about 65 minutes, the decay-corrected radiochemical yield was 18.0 ± 4.2% (n = 59; failure n = 15), and the radiochemical purity was greater than 90%. In some situations, the yields were low (less than 5%), and the most likely cause of this problem is the initial fluorination step; the fluoride ion might not have been fully activated. In other occasions, low final radiochemical purity was often associated with the failure of the second step-removal of protection groups by anhydrous trifluoroacetic acid. A trace amount of water led to production of undesired 4-[18 F]fluoroglutamic acid. Knowledge learned from the successes and failures of synthesis may be helpful to identify critical steps and pitfalls for preparation of this clinically useful metabolic probe, [18 F]FGln, for imaging glutamine utilization in tumor of cancer patients.


Asunto(s)
Glutamina/análogos & derivados , Técnicas de Química Sintética , Ciclotrones , Glutamina/síntesis química , Glutamina/química , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Control de Calidad , Radioquímica
8.
Radiology ; 286(1): 249-259, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28914600

RESUMEN

Purpose To determine the level of clinically acceptable reduction in injected fluorine 18 (18F) fluorodeoxyglucose (FDG) dose in time-of-flight (TOF)-positron emission tomography(PET)/magnetic resonance (MR) imaging by using silicon photomultiplier (SiPM) detectors compared with TOF-PET/computed tomography (CT) using Lu1.8Y0.2SiO5(Ce), or LYSO, detectors in patients with different body mass indexes (BMIs). Materials and Methods Patients were enrolled in this study as part of a larger prospective study with a different purpose than evaluated in this study (NCT02316431). All patients gave written informed consent prior to inclusion into the study. In this study, 74 patients with different malignant diseases underwent sequential whole-body TOF-PET/CT and TOF-PET/MR imaging. PET images with simulated reduction of injected 18F-FDG doses were generated by unlisting the list-mode data from PET/MR imaging. Two readers rated the image quality of whole-body data sets, as well as the image quality in each body compartment, and evaluated the conspicuity of malignant lesions. Results The image quality with 70% or 60% of the injected dose of 18F-FDG at PET/MR imaging was comparable to that at PET/CT. With 50% of the injected dose, comparable image quality was maintained among patients with a BMI of less than 25 kg/m2. PET images without TOF reconstruction showed higher artifact scores and deteriorated sharpness than those with TOF reconstruction. Conclusion Sixty percent of the usually injected 18F-FDG dose (reduction of up to 40%) in patients with a BMI of more than 25 kg/m2 results in clinically adequate PET image quality in TOF-PET/MR imaging performed by using SiPM detectors. Additionally, in patients with a BMI of less than 25 kg/m2, 50% of the injected dose may safely be used. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Fluorodesoxiglucosa F18/administración & dosificación , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fluorodesoxiglucosa F18/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Estudios Prospectivos
9.
Arterioscler Thromb Vasc Biol ; 36(11): 2213-2219, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27609368

RESUMEN

OBJECTIVE: Intraplaque neovascularization contributes to the progression and rupture of atherosclerotic lesions. Glutamate carboxypeptidase II (GCPII) is strongly expressed by endothelial cells of tumor neovasculature and plays a major role in hypoxia-induced neovascularization in rodent models of benign diseases. We hypothesized that GCPII expression may play a role in intraplaque neovascularization and may represent a target for imaging of atherosclerotic lesions. The aim of this study was to determine frequency, pattern, and clinical correlates of vessel wall uptake of a 68Ga-GCPII ligand for positron emission tomographic imaging. APPROACH AND RESULTS: Data from 150 patients undergoing 68Ga-GCPII ligand positron emission tomography were evaluated. Tracer uptake in various arterial segments was analyzed and was compared with calcified plaque burden, cardiovascular risk factors, and immunohistochemistry of carotid specimens. Focal arterial uptake of 68Ga-GCPII ligand was identified at 5776 sites in 99.3% of patients. The prevalence of uptake sites was highest in the thoracic aorta; 18.4% of lesions with tracer uptake were colocalized with calcified plaque. High injected dose (P=0.0005) and obesity (P=0.007) were significantly associated with 68Ga-GCPII ligand accumulation, but other cardiovascular risk factors showed no association. The number of 68Ga-GCPII ligand uptake sites was significantly associated with overweight condition (P=0.0154). Immunohistochemistry did not show GCPII expression. Autoradiographic blocking studies indicated nonspecific tracer binding. CONCLUSIONS: 68Ga-GCPII ligand positron emission tomography does not identify vascular lesions associated with atherosclerotic risk. Foci of tracer accumulation are likely caused by nonspecific tracer binding and are in part noise-related. Taken together, GCPII may not be a priority target for imaging of atherosclerotic lesions.


Asunto(s)
Antígenos de Superficie/metabolismo , Aterosclerosis/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Complejos de Coordinación/farmacocinética , Glutamato Carboxipeptidasa II/metabolismo , Imagen Molecular/métodos , Neovascularización Patológica , Placa Aterosclerótica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Anciano , Anciano de 80 o más Años , Aterosclerosis/enzimología , Aterosclerosis/patología , Biomarcadores/metabolismo , Enfermedades de las Arterias Carótidas/enzimología , Enfermedades de las Arterias Carótidas/patología , Estudios de Factibilidad , Femenino , Humanos , Ligandos , Masculino , Persona de Mediana Edad , Imagen Molecular/instrumentación , Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Valor Predictivo de las Pruebas , Unión Proteica , Reproducibilidad de los Resultados , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Distribución Tisular
10.
Hell J Nucl Med ; 20(2): 146-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28697192

RESUMEN

OBJECTIVE: To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. MATERIALS AND METHODS: The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm2. The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm2. The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm2. RESULTS: The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. CONCLUSION: A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and acquisition strategies.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/veterinaria , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/veterinaria , Imagen de Cuerpo Entero/instrumentación , Imagen de Cuerpo Entero/veterinaria , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Ratones , Fantasmas de Imagen , Proyectos Piloto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Artículo en Japonés | MEDLINE | ID: mdl-28824085

RESUMEN

OBJECTIVE: The present study aimed to clarify gross tumor volume (GTV) contouring accuracy at the diaphragm boundary using respiratory-gated PET/CT. METHODS: The lung/diaphragm boundary was simulated using a phantom containing 18F solution (10.6 kBq/mL). Tumors were simulated using spheres (diameter, 11-38 mm) containing 18F and located at the positions of the lungs and liver. The tumor background ratios (TBR) were 2, 4, and 8. The phantom was moved from the superior to inferior direction with a 20-mm motion displacement at 3.6 s intervals. The recovery coefficient (RC), volume RC (VRC), and standardized uptake value (SUV) threshold were calculated using stationary, non-gated (3D), and gated (4D) PET/CT. RESULTS: In lung cancer simulation, RC and VRC in 3D PET images were, respectively, underestimated and overestimated in smaller tumors, whereas both improved in 4D PET images regardless of tumor size and TBR. The optimal SUV threshold was about 30% in 4D PET images. In liver cancer simulation, RC and VRC were, respectively, underestimated and overestimated in smaller tumors, and when the TBR was lower, but both improved in 4D PET images when tumors were >17 mm and the TBR was >4. The optimal SUV threshold tended to depend on the TBR. CONCLUSIONS: The contouring accuracy of GTV was improved by considering TBR and using an optimal SUV threshold acquired from 4D PET images.


Asunto(s)
Diafragma , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Respiración , Humanos , Fantasmas de Imagen , Carga Tumoral
12.
Artículo en Japonés | MEDLINE | ID: mdl-28331146

RESUMEN

PURPOSE: This study aimed to evaluate the advantage of scatter limitation correction with misregistration between µ-map in the computed tomography attenuation correction and positron emission tomography in PET/CT study. METHODS: We used torso phantom including simulated tumor and arms phantom. The CT scan was performed by changing the position of arms phantom after PET scan. Arms phantom movement was out-side direction, in-side direction, and top-side direction by 1-12 cm, respectively. The standardized uptake value (SUV) of simulated tumor and background (B.G.) were evaluated for three specific parameters. Two scatter corrections were performed with scatter correction (SC), and scatter limitation correction (SLC). RESULTS: The SUVmax of simulated tumor was increased by 2.80% (SC), and 2.78% (SLC) on out-side arms movement. In the SUVmax, SC and SLC were decreased by 28.6%, 9.04% on in-side arms, respectively. SUVmax of the SC, and SLC were increased on top-side arms. The scatter fraction factor (SFF) of SC and SLC were 0.25, 0.25 on out-side 5 cm and were 0.732, 0.391 on in-side 5 cm and were 0.785, 0.434 on top-side 12 cm, respectively. CONCLUSION: SLC improved the overestimation of the SUVmax by SC. However, it is necessary to pay attention, in order not to be improved completely. The finding results indicated that SFF was setting 0.40-0.45 in our institute PET/CT system.


Asunto(s)
Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Torso/diagnóstico por imagen
13.
Radiologia ; 59(5): 431-445, 2017.
Artículo en Inglés, Español | MEDLINE | ID: mdl-28089381

RESUMEN

Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important advances in this hybrid imaging modality.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fenómenos Físicos
14.
J Nucl Cardiol ; 23(5): 1086-1097, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26275447

RESUMEN

BACKGROUND: Misalignment between positron emission tomography (PET) and computed tomography (CT) data is known to generate artifactual defects in cardiac PET images due to imprecise attenuation correction (AC). In this work, the use of a maximum likelihood attenuation and activity (MLAA) algorithm is proposed to avoid such artifacts in time-of-flight (TOF) PET. METHODS: MLAA was implemented and tested using a thorax/heart phantom and retrospectively on fourteen (13)N-ammonia PET/CT perfusion studies. Global and local misalignments between PET and CT data were generated by shifting matched CT images or using CT data representative of the end-inspiration phase. PET images were reconstructed with MLAA and a 3D-ordered-subsets-expectation-maximization (OSEM)-TOF algorithm. Images obtained with 3D-OSEM-TOF and matched CT were used as references. These images were compared (qualitatively and semi-quantitatively) with those reconstructed with 3D-OSEM-TOF and MLAA for which a misaligned CT was used, respectively, for AC and initialization. RESULTS: Phantom experiment proved the capability of MLAA to converge toward the correct emission and attenuation distributions using, as input, only PET emission data, but convergence was very slow. Initializing MLAA with phantom CT images markedly improved convergence speed. In patient studies, when shifted or end-inspiration CT images were used for AC, 3D-OSEM-TOF reconstructions showed artifacts of increasing severity, size, and frequency with increasing mismatch. Such artifacts were absent in the corresponding MLAA images. CONCLUSION: The proposed implementation of the MLAA algorithm is a feasible and robust technique to avoid AC mismatch artifacts in cardiac PET studies provided that a CT of the source is available, even if poorly aligned.


Asunto(s)
Algoritmos , Artefactos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
15.
J Nucl Cardiol ; 23(5): 1072-1079, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-25933679

RESUMEN

BACKGROUND: Previously, we proposed interpolated averaged CT (IACT) for improved attenuation correction (AC) in thoracic PET/CT. This study aims to evaluate its feasibility and effectiveness on cardiac PET/CT. METHODS: We simulated (18)F-FDG distribution using the XCAT phantom with normal and abnormal cardiac uptake. Average activity and attenuation maps represented static PET and respiration average CT (ACT), respectively, while the attenuation maps of end-inspiration/expiration represented 2 helical CTs (HCT). IACT was obtained by averaging the 2 extreme phases and the interpolated phases generated between them. Later, we recruited 4 patients who were scanned 1 hr post 315-428 MBq (18)F-FDG injection. Simulated and clinical PET sinograms were reconstructed with AC using (1) HCT, (2) IACT, and (3) ACT. Polar plots and the 17-segment plots were analyzed. Two regions-of-interest were drawn on lesion and background area to obtain the intensity ratio (IR). RESULTS: Polar plots of PETIACT-AC were more similar to PETACT-AC in both simulation and clinical data. Artifacts were observed in various segments in PETHCT-AC. IR differences of HCT as compared to the phantom were up to ~20%. CONCLUSIONS: IACT-AC reduced respiratory artifacts and improved PET/CT matching similarly to ACT-AC. It is a promising low-dose alternate of ACT for cardiac PET/CT.


Asunto(s)
Artefactos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Estudios de Factibilidad , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Análisis Numérico Asistido por Computador , Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 72(11): 1067-1073, 2016.
Artículo en Japonés | MEDLINE | ID: mdl-27867165

RESUMEN

OBJECTIVE: The present study aimed to determine the qualitative and quantitative accuracy of the Q.Freeze algorithm in PET/CT images of liver tumors. METHODS: A body phantom and hot spheres representing liver tumors contained 5.3 and 21.2 kBq/mL of a solution containing 18F radioactivity, respectively. The phantoms were moved in the superior-inferior direction at a motion displacement of 20 mm. Conventional respiratory-gated (RG) and Q.Freeze images were sorted into 6, 10, and 13 phase-groups. The SUVave was calculated from the background of the body phantom, and the SUVmax was determined from the hot spheres of the liver tumors. Three patients with four liver tumors were also clinically assessed by whole-body and RG PET. The RG and Q.Freeze images derived from the clinical study were also sorted into 6, 10 and 13 phase-groups. Liver signal-to-noise ratio (SNR) and SUVmax were determined from the RG and Q.Freeze clinical images. RESULTS: The SUVave of Q.Freeze images was the same as those derived from the body phantom using RG. The liver SNR improved with Q.Freeze, and the SUVsmax was not overestimated when Q.Freeze was applied in both the phantom and clinical studies. Q.Freeze did not degrade the liver SNR and SUVmax even though the phase number was larger. CONCLUSIONS: Q.Freeze delivered qualitative and quantitative motion correction than conventional RG imaging even in 10-phase groups.


Asunto(s)
Algoritmos , Neoplasias Hepáticas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anciano , Anciano de 80 o más Años , Femenino , Fluorodesoxiglucosa F18 , Humanos , Masculino , Movimiento (Física) , Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Relación Señal-Ruido
17.
PLoS One ; 16(2): e0246848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33566845

RESUMEN

INTRODUCTION: We aimed to assess the feasibility of SPECT and PET Y-90 imaging, and to compare these modalities by visualizing hot and cold foci in phantoms for varying isotope concentrations. MATERIALS AND METHODS: The data was acquired from the Jaszczak and NEMA phantoms. In the Jaszczak phantom Y-90 concentrations of 0.1 MBq/ml and 0.2 MBq/ml were used, while higher concentrations, up to 1.0 MBq/ml, were simulated by acquisition time extension with respect to the standard clinical protocol of 30 sec/projection for SPECT and 30 min/bed position for PET imaging. For NEMA phantom, the hot foci had concentrations of about 4 MB/ml and the background 0.1 or 0.0 MBq/ml. All of the acquired data was analysed both qualitatively and quantitatively. Qualitative assessment was conducted by six observers asked to identify the number of visible cold or hot foci. Inter-observer agreement was assessed. Quantitative analysis included calculations of contrast and contrast-to-noise ratio (CNR), and comparisons with the qualitative results. RESULTS: For SPECT data up to two cold foci were discernible, while for PET four foci were visible. We have shown that CNR (with Rose criterion) is a good measure of foci visibility for both modalities. We also found good concordance of qualitative results for the Jaszczak phantom studies between the observers (corresponding Krippendorf's alpha coefficients of 0.76 to 0.84). In the NEMA phantom without background activity all foci were visible in SPECT/CT images. With isotope in the background, 5 of 6 spheres were discernible (CNR of 3.0 for the smallest foci). For PET studies all hot spheres were visible, regardless of the background activity. CONCLUSIONS: PET Y-90 imaging provided better results than Bremsstrahlung based SPECT imaging. This indicates that PET/CT might become the method of choice in Y-90 post radioembolization imaging for visualisation of both necrotic and hot lesions in the liver.


Asunto(s)
Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Radioisótopos de Itrio , Humanos
18.
J Nucl Med ; 62(6): 861-870, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008932

RESUMEN

The world's first total-body PET scanner with an axial field of view (AFOV) of 194 cm is now in clinical and research use at our institution. The uEXPLORER PET/CT system is the first commercially available total-body PET scanner. Here we present a detailed physical characterization of this scanner based on National Electrical Manufacturers Association (NEMA) NU 2-2018 along with a new set of measurements devised to appropriately characterize the total-body AFOV. Methods: Sensitivity, count-rate performance, time-of-flight resolution, spatial resolution, and image quality were evaluated following the NEMA NU 2-2018 protocol. Additional measurements of sensitivity and count-rate capabilities more representative of total-body imaging were performed using extended-geometry phantoms based on the world-average human height (∼165 cm). Lastly, image quality throughout the long AFOV was assessed with the NEMA image quality (IQ) phantom imaged at 5 axial positions and over a range of expected total-body PET imaging conditions (low dose, delayed imaging, short scan duration). Results: Our performance evaluation demonstrated that the scanner provides a very high sensitivity of 174 kcps/MBq, a count-rate performance with a peak noise-equivalent count rate of approximately 2 Mcps for total-body imaging, and good spatial resolution capabilities for human imaging (≤3.0 mm in full width at half maximum near the center of the AFOV). Excellent IQ, excellent contrast recovery, and low noise properties were illustrated across the AFOV in both NEMA IQ phantom evaluations and human imaging examples. Conclusion: In addition to standard NEMA NU 2-2018 characterization, a new set of measurements based on extending NEMA NU 2-2018 phantoms and experiments was devised to characterize the physical performance of the first total-body PET system. The rationale for these extended measurements was evident from differences in sensitivity, count-rate-activity relationships, and noise-equivalent count-rate limits imposed by differences in dead time and randoms fraction between the NEMA NU 2 70-cm phantoms and the more representative total-body imaging phantoms. Overall, the uEXPLORER PET system provides ultra-high sensitivity that supports excellent spatial resolution and IQ throughout the field of view in both phantom and human imaging.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación , Humanos , Límite de Detección , Fantasmas de Imagen , Control de Calidad , Factores de Tiempo
19.
Sci Rep ; 11(1): 22065, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764407

RESUMEN

Positron emission tomography (PET) has been successfully used to investigate central nervous processes, including the central auditory pathway. Unlike early water-cooled PET-scanners, novel PET/CT scanners employ air cooling and include a CT system, both of which result in higher background noise levels. In the present study, we describe the background noise generated by two state-of-the-art air-cooled PET/CT scanners. We measured speech recognition in background noise: recorded PET noise and a speech-shaped noise applied in clinical routine to subjects with normal hearing. Background noise produced by air-cooled PET/CT is considerable: 75.1 dB SPL (64.5 dB(A)) for the Philips Gemini TF64 and 76.9 dB SPL (68.4 dB(A)) for the Philips Vereos PET/CT (Philips Healthcare, The Netherlands). Subjects with normal hearing exhibited better speech recognition in recorded PET background noise compared with clinically applied speech-shaped noise. Speech recognition in both background noises correlated significantly. Background noise generated by PET/CT scanners should be considered when PET is used for the investigation of the central auditory pathway. Speech in PET noise is better than in speech-shaped noise because of the minor masking effect of the background noise of the PET/CT.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Percepción del Habla , Adulto , Femenino , Audición , Humanos , Masculino , Ruido , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Habla , Adulto Joven
20.
Methods Mol Biol ; 2294: 297-323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33742410

RESUMEN

Nuclear medicine radionuclide imaging is a quantitative imaging modality based on radioisotope-labeled tracers which emit radiation in the form of photons used for image reconstruction. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the two noninvasive tomographic three-dimensional radionuclide imaging procedures for both clinical and preclinical settings. In this review on nuclear medicine imaging procedures in oncology, a variety of standard SPECT and PET tracers including radioiodine, 18Fluorine fluorodeoxyglucose (18F-FDG), and 68Gallium-labeled small proteins like Prostate Specific Membrane Antigen (PSMA) or somatostatin analogues and their application as targeted molecular imaging probes for improved tumor diagnosis and tumor phenotype characterization are described. Absolute and semiquantitative approaches for calculation of tracer uptake in tumors during the course of disease and during treatment allow further insight into tumor biology, and the combination of SPECT and PET with anatomical imaging procedures like computed tomography (CT) or magnetic resonance imaging (MRI) by hybrid SPECT/CT, PET/CT, and PET/MRI scanners provides both anatomical information and tumor functional characterization within one imaging session. With the recent establishment of novel molecular radiolabeled probes for specific tumor diagnosis, prognosis, and treatment monitoring, nuclear medicine has been able to establish itself as a distinct imaging modality with increased sensitivity and specificity.


Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Radiofármacos/clasificación , Radiofármacos/normas , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA