Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.672
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852753

RESUMEN

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Animales , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/farmacología , Oxidopamina/toxicidad , Ratones , Masculino , Ratones Endogámicos C57BL , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Piridinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas , Pirimidinas
2.
Eur J Neurosci ; 59(6): 1169-1176, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37515363

RESUMEN

Nelotanserin is a serotonin 2A and 2C (5-HT2A/2C) inverse agonist that was previously tested in the clinic for rapid-eye movement sleep behaviour disorder and psychosis in patients with Parkinson's disease (PD) dementia. Its effect on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia has however not been investigated. As 5-HT2A antagonism/inverse agonism is a validated approach to alleviate dyskinesia, we undertook the current study to evaluate the anti-dyskinetic potential of nelotanserin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Parkinsonism was induced in six common marmosets (Callithrix jacchus, three females and three males) that were then chronically treated with L-DOPA to induce dyskinesia. On experimental days, they were administered L-DOPA in combination with vehicle or nelotanserin (0.1, 0.3 and 1 mg/kg) subcutaneously, in a randomised fashion. Dyskinesia and parkinsonism were rated post hoc by a blinded observer. In comparison to vehicle, the addition of nelotanserin 0.3 and 1 mg/kg to L-DOPA diminished peak dose dyskinesia by 47% (P < 0.05) and 69% (P < 0.001). Nelotanserin 0.3 and 1 mg/kg also reduced the severity of global dyskinesia, by 40% (P < 0.01) and 55% (P < 0.001), when compared to vehicle. Nelotanserin 0.1 mg/kg did not alleviate peak dose or global dyskinesia severity. Nelotanserin had no impact on the anti-parkinsonian action of L-DOPA. Our results highlight that nelotanserin may represent an efficacious anti-dyskinetic drug and provide incremental evidence of the potential benefit of 5-HT2A/2C antagonism/inverse agonism for drug-induced dyskinesia in PD.


Asunto(s)
Discinesia Inducida por Medicamentos , Trastornos Parkinsonianos , Compuestos de Fenilurea , Pirazoles , Animales , Femenino , Masculino , Antiparkinsonianos/efectos adversos , Callithrix , Agonismo Inverso de Drogas , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/etiología , Levodopa/efectos adversos , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Serotonina
3.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563661

RESUMEN

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Asunto(s)
Discinesia Inducida por Medicamentos , Trastornos Parkinsonianos , Receptores de Glutamato Metabotrópico , Animales , Masculino , Ratas , Aminoácidos/farmacología , Antiparkinsonianos/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Agonistas de Aminoácidos Excitadores/farmacología , Levodopa/farmacología , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
4.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499659

RESUMEN

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Asunto(s)
Modelos Animales de Enfermedad , Trastornos Parkinsonianos , Reserpina , Privación de Sueño , Animales , Masculino , Reserpina/farmacología , Privación de Sueño/complicaciones , Ratones , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Catalepsia/inducido químicamente , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Actividad Motora/fisiología , Actividad Motora/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacos , Anhedonia/fisiología , Anhedonia/efectos de los fármacos
5.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791326

RESUMEN

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Asunto(s)
Compuestos de Manganeso , Manganeso , Ratones Endogámicos C57BL , Vanadio , Animales , Ratones , Manganeso/toxicidad , Vanadio/toxicidad , Masculino , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/patología , Dopamina/metabolismo , Compuestos de Vanadio , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , alfa-Sinucleína/metabolismo , Cloruros/toxicidad , Cloruros/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Aldehídos/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Modelos Animales de Enfermedad , Ácido 3,4-Dihidroxifenilacético/metabolismo
6.
Biochem Soc Trans ; 51(1): 435-445, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36645005

RESUMEN

The prevalence of neurological diseases is currently growing due to the combination of several factor, including poor lifestyle and environmental imbalance which enhance the contribution of genetic factors. Parkinson's disease (PD), a chronic and progressive neurological condition, is one of the most prevalent neurodegenerative human diseases. Development of models may help to understand its pathophysiology. This review focuses on studies using invertebrate models to investigate certain chemicals that generate parkinsonian-like symptoms models. Additionally, we report some preliminary results of our own research on a crustacean (the crab Ucides cordatus) and a solitary ascidian (Styela plicata), used after induction of parkinsonism with 6-hydroxydopamine and the pesticide rotenone, respectively. We also discuss the advantages, limits, and drawbacks of using invertebrate models to study PD. We suggest prospects and directions for future investigations of PD, based on invertebrate models.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Animales , Trastornos Parkinsonianos/inducido químicamente , Enfermedad de Parkinson/genética , Rotenona/efectos adversos , Invertebrados , Modelos Animales de Enfermedad
7.
Nitric Oxide ; 134-135: 49-60, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054808

RESUMEN

INTRODUCTION: Available studies have shown the involvement of nitric oxide (NO) in the processes that lead to neurodegeneration in Parkinson's disease (PD). Also, the use of inhibitors of the inducible isoform of NO-synthase (iNOS) promotes neuroprotection and attenuates dopamine (DA) loss in experimental models of Parkinsonism. In addition, NO also appears to be involved in cardiovascular changes in 6-hydroxydopamine (6-OHDA)-induced Parkinsonism. The current study aimed to evaluate the effects of iNOS inhibition on cardiovascular and autonomic function in animals that were subjected to Parkinsonism by the administration of 6-OHDA. MATERIALS AND METHODS: The animals underwent stereotaxic surgery for bilateral microinfusion of the neurotoxin 6-OHDA (6 mg/mL in 0.2% ascorbic acid in sterile saline solution) or vehicle solution for the Sham group. From the day of stereotaxis until the day of femoral artery catheterization, the animals were treated with the iNOS inhibitor, S-methylisothiourea (SMT; 10 mg/kg; i. p.) or saline solution (0.9%; i. p.) for 7 days. The animals were divided into four groups: Sham-Saline, Sham-SMT, 6-OHDA-Saline, and 6-OHDA-SMT. Subsequent analyses were performed on these four groups. After 6 days, they underwent catheterization of the femoral artery, and 24 h later, mean arterial pressure (MAP) and heart rate (HR) were recorded. Another group of animals (the 6-OHDA and Sham groups) was assessed for aortic vascular reactivity after 7 days of bilateral infusion of 6-OHDA or vehicle, in which cumulative concentration-effect curves (CCEC) were made for phenylephrine (Phenyl), acetylcholine and sodium nitroprusside (NPS). Also, CCEC in the presence of Nw-nitro-arginine-methyl-ester (l-NAME) (10-5 M), SMT (10-6 M), and indomethacin (10-5 M) blockers were made. RESULTS: The effectiveness of the 6-OHDA lesion was confirmed with the reduction of DA in 6-OHDA animals. However, treatment with SMT could not reverse the loss of DA. Concerning the baseline parameters, SBP and MAP values were lower in 6-OHDA animals compared to their Sham control, with no effect of treatment with SMT. In the analysis of SBP variability, a decrease in variance, the VLFabs component, and the LFabs component were observed in the 6-OHDA groups when compared to their controls, regardless of treatment with SMT. It was also observed that intravenous injections of SMT resulted in an increase in BP and a decrease in HR. However, the response was not different between the Sham and 6-OHDA groups. In vascular function, there was a hyporeactivity to Phenyl in the 6-OHDA group, and when investigating the mechanisms of this hyporeactivity, it was seen that the Rmax to Phenyl increased with incubation with SMT, indicating that iNOS could be involved in the vascular hyporeactivity of animals with Parkinsonism. CONCLUSION: Thus, the set of results presented in this study suggests that part of the cardiovascular dysfunction in animals subjected to 6-OHDA Parkinsonism may be peripheral and involve the participation of endothelial iNOS.


Asunto(s)
Sistema Cardiovascular , Trastornos Parkinsonianos , Animales , Masculino , Ratas , Dopamina , Inhibidores Enzimáticos/farmacología , NG-Nitroarginina Metil Éster/farmacología , Oxidopamina/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Fenilefrina , Ratas Wistar , Solución Salina
8.
J Toxicol Environ Health B Crit Rev ; 26(4): 201-237, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36859813

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Animales , Neurotoxinas/efectos adversos , Pez Cebra , Enfermedad de Parkinson/etiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Larva , Trastornos Parkinsonianos/inducido químicamente , Modelos Teóricos , Modelos Animales de Enfermedad
9.
Pharmacoepidemiol Drug Saf ; 32(12): 1378-1386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37491627

RESUMEN

BACKGROUND: The disease burden of parkinsonism is extremely costly in the United States. Unlike Parkinson's disease, drug-induced parkinsonism (DIP) is acute and reversible; exploring the causative drug is important to prevent DIP in patients at high-risk of parkinsonism. OBJECTIVE: To examine whether the use of gastrointestinal (GI) prokinetics is associated with an increased risk of parkinsonism. METHODS: We conducted a case-crossover study using nationally representative data. We included patients who were newly diagnosed with parkinsonism (ICD-10 G20, G21.1, G25.1) between January 1, 2007 and December 1, 2015. The first prescription date of G20, G21.1, or G25.1 diagnoses was defined as the index date (0 day). Patients with prior extrapyramidal and movement disorders or brain tumors were excluded. We assessed the exposure within the risk (0-29 days) and control periods (60-89 days), before or on the index date. Conditional logistic regression estimated the adjusted odds ratio (aOR) for parkinsonism. RESULTS: Overall, 2268 and 1674 patients were exposed to GI prokinetics during the risk and control periods, respectively. The use of GI prokinetics significantly increased the occurrence of parkinsonism (aOR = 2.31; 95% Confidence Interval [CI], 2.06-2.59). The use of GI prokinetics was associated with a higher occurrence of parkinsonism in elderly patients (≥65 years old; aOR = 2.69; 95% CI, 2.30-3.14) than in younger patients (aOR = 1.90; 95% CI, 1.59-2.27). CONCLUSIONS: The use of GI prokinetics was significantly associated with higher occurrences of parkinsonism, necessitating close consideration when using GI prokinetics.


Asunto(s)
Enfermedad de Parkinson Secundaria , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Estados Unidos/epidemiología , Anciano , Estudios Cruzados , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/epidemiología , Estudios de Casos y Controles , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/epidemiología
10.
Acta Pharmacol Sin ; 44(5): 940-953, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36357669

RESUMEN

Dopaminergic neuron degeneration is a hallmark of Parkinson's disease (PD). We previously reported that the inactivation of von Hippel‒Lindau (VHL) alleviated dopaminergic neuron degeneration in a C. elegans model. In this study, we investigated the specific effects of VHL loss and the underlying mechanisms in mammalian PD models. For in vivo genetic inhibition of VHL, AAV-Vhl-shRNA was injected into mouse lateral ventricles. Thirty days later, the mice received MPTP for 5 days to induce PD. Behavioral experiments were conducted on D1, D3, D7, D14 and D21 after the last injection, and the mice were sacrificed on D22. We showed that knockdown of VHL in mice significantly alleviated PD-like syndromes detected in behavioral and biochemical assays. Inhibiting VHL exerted similar protective effects in MPP+-treated differentiated SH-SY5Y cells and the MPP+-induced C. elegans PD model. We further demonstrated that VHL loss-induced protection against experimental parkinsonism was independent of hypoxia-inducible factor and identified the Dishevelled-2 (DVL-2)/ß-catenin axis as the target of VHL, which was evolutionarily conserved in both C. elegans and mammals. Inhibiting the function of VHL promoted the stability of ß-catenin by reducing the ubiquitination and degradation of DVL-2. Thus, in vivo overexpression of DVL-2, mimicking VHL inactivation, protected against PD. We designed a competing peptide, Tat-DDF-2, to inhibit the interaction between VHL and DVL-2, which exhibited pharmacological potential for protection against PD in vitro and in vivo. We propose the therapeutic potential of targeting the interaction between VHL and DVL-2, which may represent a strategy to alleviate neurodegeneration associated with PD.


Asunto(s)
Proteínas Dishevelled , Enfermedad de Parkinson , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Animales , Humanos , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , beta Catenina/metabolismo , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Proteínas Dishevelled/efectos de los fármacos , Proteínas Dishevelled/metabolismo , Dopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Mamíferos , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/antagonistas & inhibidores , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
11.
Hum Psychopharmacol ; 38(2): e2861, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36462184

RESUMEN

INTRODUCTION: Drug-induced extrapyramidal syndrome (EPS) remains a major problem in clinical psychiatry. This study aimed to examine the factor structure of drug-induced extrapyramidal symptoms observed in patients with schizophrenia and assessed using the Drug-Induced Extrapyramidal Symptoms Scale (DIEPSS). METHODS: The participants were 1478 patients with a diagnosis of schizophrenia whose EPS was assessed using the DIEPSS in India, Indonesia, Japan, Malaysia, and Taiwan in the 2016 REAP AP-4 study. The records of the participants were randomly divided into two subgroups: the first for exploratory factor analysis of the eight DIEPSS items, and the second for confirmatory factor analysis. RESULTS: The factor analysis identified three factors: F1 (gait and bradykinesia), F2 (muscle rigidity and tremor), and F3 (sialorrhea, akathisia, dystonia, and dyskinesia). CONCLUSION: The results suggest that the eight individual items of the DIEPSS could be composed of three different mechanisms: acute parkinsonism observed during action (F1), acute parkinsonism observed at rest (F2), and central dopaminergic mechanisms with pathophysiology other than acute parkinsonism (F3).


Asunto(s)
Antipsicóticos , Enfermedades de los Ganglios Basales , Trastornos Parkinsonianos , Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Antipsicóticos/efectos adversos , Enfermedades de los Ganglios Basales/inducido químicamente , Enfermedades de los Ganglios Basales/diagnóstico , Enfermedades de los Ganglios Basales/epidemiología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Japón
12.
Ecotoxicol Environ Saf ; 263: 115238, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441952

RESUMEN

Although adequate intake of manganese (Mn) is essential to humans, Mn in excess is neurotoxic. Exposure to extremely high doses of Mn results in "manganism", a condition that exhibits Parkinson-like symptoms. However, the mechanisms underlying its neurotoxic effects in Mn-induced parkinsonism pathogenesis are unclear. In this study, 8-week-old male C57BL/6 J mice were injected intraperitoneally with saline and 50 mg/kg MnCl2 respectively once daily for 14 days to produce an acute Mn neurotoxicity model. Accumulation of Mn in the midbrain, motor dysfunction and loss of dopaminergic neurons in the substantia nigra evidenced Mn neurotoxicity. Untargeted lipidomic analysis demonstrated that Mn overexposure altered lipidome profiles. A significant modulation of 12 lipid subclasses belonging to 5 different categories were found in the midbrain and among the most abundant lipids were sphingolipids, glycerophospholipids, and glycerides. The levels of sphingomyelin (SM) were significantly decreased after Mn treatment. The expression of SM biosynthesis genes was decreased dramatically while sphingomyelinase was up-regulated. In addition, we observed oxidative stress in both the midbrain of mice and MN9D cells, indicated by the increase of MDA level, the decrease of reduced GSH level and the inhibition of SOD and GPx enzyme activities. There was a correlation between these changes and motor dysfunctions. Overall, our study is the first to use lipidomics techniques to explore the pathogenesis of Mn-induced parkinsonism in C57BL/6 J mice. Mn induced molecular events in the midbrain, such as lipid metabolism disorders, oxidative stress and dopaminergic neurons injury, may mechanistically play important roles in the pathogenesis of Parkinson-like symptoms. Moreover, these findings emphasize the necessity for reducing the health risk of environmental neurotoxic pollutants in relation to parkinsonism.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Masculino , Humanos , Animales , Ratones , Manganeso/toxicidad , Ratones Endogámicos C57BL , Estrés Oxidativo , Trastornos Parkinsonianos/inducido químicamente , Lípidos
13.
Eur Child Adolesc Psychiatry ; 32(9): 1805-1814, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37039890

RESUMEN

Although several studies provided evidence on the epidemiology of drug-induced Parkinsonism (DIP) and its causative drugs, it is still limited in pediatrics. This study aimed to investigate the prevalence and risk of DIP in pediatrics. We used the Health Insurance Review and Assessment Service-Pediatric Patients Sample in Korea between 2010 and 2017 to estimate the annual prevalence of DIP and causative drug use using a cross-sectional design. The risk of DIP associated with causative drugs was evaluated using a case-crossover design. Adjusted odds ratios (aOR) with 95% confidence intervals (CI) were calculated using a conditional logistic regression. A total of 2925 pediatric patients had diagnosed with DIP from 2010 to 2017. Most patients were aged between 12 and19 years old, and 99.8% had any diagnosis of mental health disorder (MHD). During the study period, the prevalence of DIP increased by 10.0-fold from 2010 to 2017. All causative drugs showed a corresponding increase in their use, with atypical antipsychotics being the most prominent (increase ratio, 2.07). For both in the prevalence of DIP and atypical antipsychotic use, the increment was much bigger in patients with non-psychotic MHD than that in patients with psychotic MHD. In the case-crossover study, antipsychotics showed the largest aOR with DIP. Risperidone among antipsychotics showed the highest risk for DIP (aOR = 7.09, 95% CI = 3.83-13.09), followed by aripiprazole (aOR = 5.03, 95% CI = 2.88-8.80). This study suggests that the increase in DIP prevalence in pediatric patients might be because of the increased use of atypical antipsychotics.


Asunto(s)
Antipsicóticos , Trastornos Parkinsonianos , Niño , Humanos , Antipsicóticos/efectos adversos , Estudios Cruzados , Estudios Transversales , Trastornos Parkinsonianos/inducido químicamente , Prevalencia , Adolescente , Adulto Joven
14.
Plant Foods Hum Nutr ; 78(4): 654-661, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796415

RESUMEN

Parkinson's disease (PD) and other age-related neurodegenerative ailments have a strong link to oxidative stress. Bioflavonoid naringenin has antioxidant properties. The effects of pre- and post-naringenin supplementation on a rotenone-induced PD model were examined in this work. Naringenin (50 mg/kg, p.o.) was administered to rats for two weeks before the administration of rotenone in the pre-treatment phase. In contrast, rotenone (1.5 mg/kg, s.c.) was administered for eight days before naringenin (50 mg/kg, p.o.) was supplemented for two weeks in the post-treatment phase. During behavioral investigation, the motor and non-motor signs of PD were observed. Additionally, estimation of neurochemical and biochemical parameters was also carried out. Compared to controls, rotenone treatment substantially increased oxidative stress, altered neurotransmitters, and caused motor and non-motor impairments. Rotenone-induced motor and non-motor impairments were considerably reduced by naringenin supplementation. The supplementation also increased antioxidant enzyme activities and restored the changes in neurotransmitter levels. The findings of this work strongly imply that daily consumption of flavonoids such as naringenin may have a therapeutic potential to combat PD.


Asunto(s)
Fármacos Neuroprotectores , Trastornos Parkinsonianos , Ratas , Animales , Rotenona/toxicidad , Antioxidantes/farmacología , Alimentos Funcionales , Modelos Animales de Enfermedad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Estrés Oxidativo , Fármacos Neuroprotectores/efectos adversos
15.
Ideggyogy Sz ; 76(3-4): 141-144, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37009762

RESUMEN

Introduction – Methanol is a colorless and highly toxic liquid similar to ethanol in odor and taste. Methanol intake can lead to severe metabolic acidosis, loss of vision, permanent neurological damage, and death.

Case report – We report a case of a 19-year-old female patient who had no known disease history. A large portion of her back was covered in spirits for back pain and kept on for 2 days. Cranial magnetic resonance imaging (MRI) on the 5th day showed hyperintense pathologic signal changes in the T2 sequence without contrast enhancement in the bilateral frontal corticalsubcortical regions and basal ganglia. Following neurological examination of the patient, she was found to have bradymimia, marked resting tremor, bradykinesia, and dystonia on the right upper and lower extremities. Our case is important because it is the only case where parkinsonism developed as a result of acute transdermal methanol intoxication.

.


Asunto(s)
Metanol , Trastornos Parkinsonianos , Femenino , Humanos , Adulto Joven , Adulto , Trastornos Parkinsonianos/inducido químicamente , Etanol , Imagen por Resonancia Magnética
16.
J Neurosci ; 41(22): 4937-4947, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33893220

RESUMEN

Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Degeneración Nerviosa/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Insecticidas/toxicidad , Masculino , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Endogámicas Lew , Rotenona/toxicidad
17.
Mov Disord ; 37(7): 1394-1404, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35579496

RESUMEN

BACKGROUND: Viral induction of neurological syndromes has been a concern since parkinsonian-like features were observed in patients diagnosed with encephalitis lethargica subsequent to the 1918 influenza pandemic. Given the similarities in the systemic responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with those observed after pandemic influenza, there is a question whether a similar syndrome of postencephalic parkinsonism could follow coronavirus disease 2019 infection. OBJECTIVE: The goal of this study was to determine whether prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism. METHODS: K18-hACE2 mice were infected with SARS-CoV-2 to induce mild-to-moderate disease. After 38 days of recovery, mice were administered a non-lesion-inducing dose of the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and euthanized 7 days later. Subsequent neuroinflammation and substantia nigra pars compacta (SNpc) dopaminergic (DA) neuron loss were determined and compared with SARS-CoV-2 or MPTP alone. RESULTS: K18-hACE2 mice infected with SARS-CoV-2 or MPTP showed no SNpc DA neuron loss after MPTP. In mice infected and recovered from SARS-CoV-2 infection, MPTP induced a 23% or 19% greater loss of SNpc DA neurons than SARS-CoV-2 or MPTP, respectively (P < 0.05). Examination of microglial activation showed a significant increase in the number of activated microglia in both the SNpc and striatum of the SARS-CoV-2 + MPTP group compared with SARS-CoV-2 or MPTP alone. CONCLUSIONS: Our observations have important implications for long-term public health, given the number of people who have survived SARS-CoV-2 infection, as well as for future public policy regarding infection mitigation. However, it will be critical to determine whether other agents known to increase risk for PD also have synergistic effects with SARS-CoV-2 and are abrogated by vaccination. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
COVID-19 , Gripe Humana , Trastornos Parkinsonianos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Animales , COVID-19/complicaciones , Modelos Animales de Enfermedad , Dopamina , Humanos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Trastornos Parkinsonianos/inducido químicamente , SARS-CoV-2 , Tirosina 3-Monooxigenasa/metabolismo
18.
Pharmacol Res ; 182: 106338, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35781057

RESUMEN

The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.


Asunto(s)
Neuroblastoma , Trastornos Parkinsonianos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Amidohidrolasas , Animales , Modelos Animales de Enfermedad , Dopamina , Neuronas Dopaminérgicas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Degeneración Nerviosa/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico
19.
J Biochem Mol Toxicol ; 36(5): e23022, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35187747

RESUMEN

This study examined the effect of dihydroquercetin (DHQ), also knofigurewn as taxifolin, on rotenone-induced Parkinsonism in rats. Male Wistar rats were administered 1.5 mg/kg rotenone for 10 days and subsequently treated with 0.25-1.0 mg/kg DHQ for 3 days followed by the assessment of parkinsonian symptoms. Brain striatal redox stress and neurochemical dysfunction markers were assessed spectrophotometrically. Histopathological evaluation of the striatum was done by hematoxylin and eosin staining technique. The expression of genes involved in the activation of NF-κB signaling pathway (IL-1ß, TNF-α, NF-κB and IκKB), and the p53 gene in the striatum were determined by RT-qPCR. DHQ attenuated parkinsonian symptoms as well as striatal redox stress, neurochemical dysfunction, and histological alterations occasioned by rotenone toxicity. Importantly, DHQ significantly suppressed the rotenone-induced upregulation of IL-1ß, NF-κB, and IκKB expression (p < 0.05) in the striatum of parkinsonian rats. DHQ demonstrated notable neurotherapeutic potential against rotenone-induced Parkinsonism in rats by improving parkinsonian symptoms (bradykinesia, catalepsy, postural instability, impaired locomotor behavior, and tremor) and neurochemical dysfunctions via modulation of genes involved in the activation of the canonical pathway of NF-κB-mediated inflammation.


Asunto(s)
Fármacos Neuroprotectores , Trastornos Parkinsonianos , Animales , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Quercetina/análogos & derivados , Ratas , Ratas Wistar , Rotenona/toxicidad
20.
J Biochem Mol Toxicol ; 36(2): e22949, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850494

RESUMEN

Parkinson's disease (PD) ranks as the second most neurodegenerative disease characterized by loss of neurons, bradykinesia, anosmia, sleep disorder, and motor deficiency with increased global prevalence. Here, we have analyzed daidzein's neuroprotective functions in in vitro and in vivo models of PD. BV2 microglial cells induced with lipopolysaccharide (LPS) and C57BL6 mice induced with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) were used in this study to investigate neuroprotective functions of daidzein. BV2 cells induced with LPS do not exert and significant (p < 0.05) reduction in cell viability up to concentration range (5-100 µM/ml). Furthermore, LPS exposed BV2 microglia exhibited significantly (p < 0.05) increased NO production, pro-inflammatory mediators PGE2, interleukin-6 (IL6), and interleukin-1ß (IL-1ß) levels. Treatment with daidzein (10, 25, and 50 µM/ml) to LPS-induced BV2 microglia exhibited significantly (p < 0.05) decreased NO, pro-inflammatory mediators PGE2, IL6, and IlL-1ß. Similar to the in vitro results, C57BL6 mice induced with MPTP showed defects in motor functions as observed from altered forelimb and hindlimb footprint analyses, grip strength, and perturbed motor coordination observed via rotarod tests. Additionally, levels of dopamine were significantly reduced, and pro-inflammatory mediators tumor necrosis factor alpha (TNF-α), IL-1ß, IL6 were found to be increased in MPTP-induced C57BL6 PD mice. Administering daidzein significantly restored the functional levels of dopamine and pro-inflammatory mediators TNF-α, IL-1ß, IL6 to near normal physiology as seen in healthy C57BL6 mice controls. Similarly, daidzein treatment to PD mice also restored the histological architecture to near normal levels as in control mice. Together, our results collectively endorse the neuroprotective functions of daidzein as observed from our initial studies, and further studies aimed at investigating daidzein's ability in regulating the catecholamine synthesis pathway to protect substantia nigra pars compacta (SNpc) neurons are in focus.


Asunto(s)
Isoflavonas/farmacología , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos , Animales , Masculino , Ratones , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA