Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(17): e99, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32756897

RESUMEN

Mitochondrial gene expression in African trypanosomes and other trypanosomatid pathogens requires a U-nucleotide specific insertion/deletion-type RNA-editing reaction. The process is catalyzed by a macromolecular protein complex known as the editosome. Editosomes are restricted to the trypanosomatid clade and since editing is essential for the parasites, the protein complex represents a near perfect target for drug intervention strategies. Here, we report the development of an improved in vitro assay to monitor editosome function. The test system utilizes fluorophore-labeled substrate RNAs to analyze the processing reaction by automated, high-throughput capillary electrophoresis (CE) in combination with a laser-induced fluorescence (LIF) readout. We optimized the assay for high-throughput screening (HTS)-experiments and devised a multiplex fluorophore-labeling regime to scrutinize the U-insertion/U-deletion reaction simultaneously. The assay is robust, it requires only nanogram amounts of materials and it meets all performance criteria for HTS-methods. As such the test system should be helpful in the search for trypanosome-specific pharmaceuticals.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Edición de ARN , Trypanosoma brucei brucei/genética , Fluoresceína/química , Colorantes Fluorescentes/química , Genoma Mitocondrial , Reacción en Cadena de la Polimerasa Multiplex/métodos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Uridina Trifosfato/química
2.
Nucleic Acids Res ; 48(4): 2144-2155, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31965171

RESUMEN

Reiterative transcription is a non-canonical form of RNA synthesis by RNA polymerase in which a ribonucleotide specified by a single base in the DNA template is repetitively added to the nascent RNA transcript. We previously determined the X-ray crystal structure of the bacterial RNA polymerase engaged in reiterative transcription from the pyrG promoter, which contains eight poly-G RNA bases synthesized using three C bases in the DNA as a template and extends RNA without displacement of the promoter recognition σ factor from the core enzyme. In this study, we determined a series of transcript initiation complex structures from the pyrG promoter using soak-trigger-freeze X-ray crystallography. We also performed biochemical assays to monitor template DNA translocation during RNA synthesis from the pyrG promoter and in vitro transcription assays to determine the length of poly-G RNA from the pyrG promoter variants. Our study revealed how RNA slips on template DNA and how RNA polymerase and template DNA determine length of reiterative RNA product. Lastly, we determined a structure of a transcript initiation complex at the pyrBI promoter and proposed an alternative mechanism of RNA slippage and extension requiring the σ dissociation from the core enzyme.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , ARN Polimerasas Dirigidas por ADN/química , ARN Bacteriano/química , Transcripción Genética , Bacillus subtilis/química , Bacillus subtilis/genética , Ligasas de Carbono-Nitrógeno/genética , Cristalografía por Rayos X , ADN/química , ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , ARN Bacteriano/genética , Factor sigma/química , Factor sigma/genética , Uridina Trifosfato/química , Uridina Trifosfato/genética
3.
RNA Biol ; 18(sup2): 623-639, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34766865

RESUMEN

Despite the development of non-radioactive DNA/RNA labelling methods, radiolabelled nucleic acids are commonly used in studies focused on the determination of RNA fate. Nucleic acid fragments with radioactive nucleotide analoguesincorporated into the body or at the 5' or 3' terminus of the molecule can serve as probes in hybridization-based analyses of in vivo degradation and processing of transcripts. Radiolabelled oligoribonucleotides are utilized as substrates in biochemical assays of various RNA metabolic enzymes, such as exo- and endoribonucleases, nucleotidyltransferases or helicases. In some applications, the placement of the label is not a concern, while in other cases it is required that the radioactive mark is located at the 5'- or 3'-end of the molecule. An unsurpassed method for 5'-end RNA labelling employs T4 polynucleotide kinase (PNK) and [γ-32P]ATP. In the case of 3'-end labelling, several different possibilities exist. However, they require the use of costly radionucleotide analogues. Previously, we characterized an untypical nucleotidyltransferase named CutA, which preferentially incorporates cytidines at the 3'-end of RNA substrates. Here, we demonstrate that this unusual feature can be used for the development of a novel, efficient, reproducible and economical method of RNA 3'-end labelling by CutA-mediated cytidine tailing. The labelling efficiency is comparable to that achieved with the most common method applied to date, i.e. [5'-32P]pCp ligation to the RNA 3'-terminus catalysed by T4 RNA ligase I. We show the utility of RNA substrates labelled using our new method in exemplary biochemical assays assessing directionality of two well-known eukaryotic exoribonucleases, namely Dis3 and Xrn1.


Asunto(s)
Nucleotidiltransferasas/química , ARN/química , Coloración y Etiquetado/métodos , Citidina Trifosfato/química , Técnicas In Vitro , Marcaje Isotópico/métodos , Nucleótidos/química , Radioisótopos de Fósforo , ARN/genética , ARN Ligasa (ATP)/química , Coloración y Etiquetado/normas , Especificidad por Sustrato , Uridina Trifosfato/química
4.
Biochemistry ; 59(5): 652-662, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31917549

RESUMEN

Viperin is a radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication by converting cytidine triphosphate (CTP) into 3'-deoxy-3',4'-didehydro-CTP and by additional undefined mechanisms operating through its N- and C-terminal domains. Here, we describe crystal structures of viperin bound to a SAM analogue and CTP or uridine triphosphate (UTP) and report kinetic parameters for viperin-catalyzed reactions with CTP or UTP as substrates. Viperin orients the C4' hydrogen atom of CTP and UTP similarly for abstraction by a 5'-deoxyadenosyl radical, but the uracil moiety introduces unfavorable interactions that prevent tight binding of UTP. Consistently, kcat is similar for CTP and UTP whereas the Km for UTP is much greater. The structures also show that nucleotide binding results in ordering of the C-terminal tail and reveal that this region contains a P-loop that binds the γ-phosphate of the bound nucleotide. Collectively, the results explain the selectivity for CTP and reveal a structural role for the C-terminal tail in binding CTP and UTP.


Asunto(s)
Citidina Trifosfato/química , Proteínas/química , Proteínas/metabolismo , S-Adenosilhomocisteína/química , Uridina Trifosfato/química , Animales , Cristalografía por Rayos X , Citidina Trifosfato/metabolismo , Cinética , Ratones , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas/genética , S-Adenosilhomocisteína/metabolismo , Especificidad por Sustrato , Uridina Trifosfato/metabolismo
5.
J Biol Chem ; 294(19): 7573-7587, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30867194

RESUMEN

RNA viruses synthesize new genomes in the infected host thanks to dedicated, virally-encoded RNA-dependent RNA polymerases (RdRps). As such, these enzymes are prime targets for antiviral therapy, as has recently been demonstrated for hepatitis C virus (HCV). However, peculiarities in the architecture and dynamics of RdRps raise fundamental questions about access to their active site during RNA polymerization. Here, we used molecular modeling and molecular dynamics simulations, starting from the available crystal structures of HCV NS5B in ternary complex with template-primer duplexes and nucleotides, to address the question of ribonucleotide entry into the active site of viral RdRp. Tracing the possible passage of incoming UTP or GTP through the RdRp-specific entry tunnel, we found two successive checkpoints that regulate nucleotide traffic to the active site. We observed that a magnesium-bound nucleotide first binds next to the tunnel entry, and interactions with the triphosphate moiety orient it such that its base moiety enters first. Dynamics of RdRp motifs F1 + F3 then allow the nucleotide to interrogate the RNA template base prior to nucleotide insertion into the active site. These dynamics are finely regulated by a second magnesium dication, thus coordinating the entry of a magnesium-bound nucleotide with shuttling of the second magnesium necessary for the two-metal ion catalysis. The findings of our work suggest that at least some of these features are general to viral RdRps and provide further details on the original nucleotide selection mechanism operating in RdRps of RNA viruses.


Asunto(s)
Guanosina Trifosfato/química , Hepacivirus/enzimología , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN/química , Uridina Trifosfato/química , Proteínas no Estructurales Virales/química , Secuencias de Aminoácidos , Dominio Catalítico , Guanosina Trifosfato/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Uridina Trifosfato/metabolismo , Proteínas no Estructurales Virales/metabolismo
6.
Chembiochem ; 21(11): 1605-1612, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31951306

RESUMEN

3'-Deoxynucleotides are an important class of drugs because they interfere with the metabolism of nucleotides, and their incorporation into DNA or RNA terminates cell division and viral replication. These compounds are generally produced by multi-step chemical synthesis, and an enzyme with the ability to catalyse the removal of the 3'-deoxy group from different nucleotides has yet to be described. Here, using a combination of HPLC, HRMS and NMR spectroscopy, we demonstrate that a thermostable fungal radical S-adenosylmethionine (SAM) enzyme, with similarity to the vertebrate antiviral enzyme viperin (RSAD2), can catalyse the transformation of CTP, UTP and 5-bromo-UTP to their 3'-deoxy-3',4'-didehydro (ddh) analogues. We show that, unlike the fungal enzyme, human viperin only catalyses the transformation of CTP to ddhCTP. Using electron paramagnetic resonance spectroscopy and molecular docking and dynamics simulations in combination with mutagenesis studies, we provide insight into the origin of the unprecedented substrate promiscuity of the enzyme and the mechanism of dehydration of a nucleotide. Our findings highlight the evolution of substrate specificity in a member of the radical-SAM enzymes. We predict that our work will help in using a new class of the radical-SAM enzymes for the biocatalytic synthesis of 3'-deoxy nucleotide/nucleoside analogues.


Asunto(s)
Citidina Trifosfato/química , Proteínas Fúngicas/química , Proteínas/química , S-Adenosilmetionina/química , Sordariales/química , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Citidina Trifosfato/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Sordariales/clasificación , Sordariales/enzimología , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo
7.
Org Biomol Chem ; 17(35): 8083-8087, 2019 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-31460550

RESUMEN

A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.


Asunto(s)
Aptámeros de Nucleótidos/química , Arabinosa/análogos & derivados , Uridina Trifosfato/química , Arabinosa/química , Sitios de Unión , Conformación de Carbohidratos , ADN/química , ADN/genética
8.
Nature ; 498(7454): 332-7, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23722159

RESUMEN

Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory cytokines. Recognition of cytosolic DNA by the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of cGAMP to activate the stimulator of interferon genes (STING). Here we report the crystal structure of cGAS alone and in complex with DNA, ATP and GTP along with functional studies. Our results explain the broad DNA sensing specificity of cGAS, show how cGAS catalyses dinucleotide formation and indicate activation by a DNA-induced structural switch. cGAS possesses a remarkable structural similarity to the antiviral cytosolic double-stranded RNA sensor 2'-5'oligoadenylate synthase (OAS1), but contains a unique zinc thumb that recognizes B-form double-stranded DNA. Our results mechanistically unify dsRNA and dsDNA innate immune sensing by OAS1 and cGAS nucleotidyl transferases.


Asunto(s)
Citosol , ADN/metabolismo , Nucleotidiltransferasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/farmacología , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Modelos Moleculares , Mutación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad , Especificidad por Sustrato , Porcinos , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo , Zinc/química , Zinc/metabolismo
9.
Mol Cell ; 41(2): 221-31, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255731

RESUMEN

In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa Dirigida por ADN/química , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Sitios de Unión , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Uridina Trifosfato/química
10.
Nucleic Acids Res ; 44(2): e16, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26384420

RESUMEN

Cellular RNA labeling strategies based on bioorthogonal chemical reactions are much less developed in comparison to glycan, protein and DNA due to its inherent instability and lack of effective methods to introduce bioorthogonal reactive functionalities (e.g. azide) into RNA. Here we report the development of a simple and modular posttranscriptional chemical labeling and imaging technique for RNA by using a novel toolbox comprised of azide-modified UTP analogs. These analogs facilitate the enzymatic incorporation of azide groups into RNA, which can be posttranscriptionally labeled with a variety of probes by click and Staudinger reactions. Importantly, we show for the first time the specific incorporation of azide groups into cellular RNA by endogenous RNA polymerases, which enabled the imaging of newly transcribing RNA in fixed and in live cells by click reactions. This labeling method is practical and provides a new platform to study RNA in vitro and in cells.


Asunto(s)
Azidas/química , ARN Polimerasas Dirigidas por ADN/química , ARN/química , Coloración y Etiquetado/métodos , Uridina Trifosfato/química , Proteínas Virales/química , Bacteriófago T7/química , Bacteriófago T7/enzimología , Química Clic , Colorantes Fluorescentes/química , Células HeLa , Humanos , Procesamiento Postranscripcional del ARN , Uridina Trifosfato/análogos & derivados
11.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1348-1357, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28844747

RESUMEN

Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity.


Asunto(s)
Proteínas Bacterianas/química , Erwinia amylovora/enzimología , Glucofosfatos/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Uridina Difosfato Glucosa/química , Uridina Trifosfato/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Erwinia amylovora/química , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosamina/análogos & derivados , Galactosamina/química , Galactosamina/metabolismo , Galactosafosfatos/química , Galactosafosfatos/metabolismo , Expresión Génica , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/metabolismo , Glucofosfatos/metabolismo , Cinética , Manosafosfatos/química , Manosafosfatos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Pentosafosfatos/química , Pentosafosfatos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Trifosfato/metabolismo
12.
Bioconjug Chem ; 28(5): 1529-1536, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28406614

RESUMEN

The development of modular and efficient methods to functionalize RNA with biophysical probes is very important in advancing the understanding of the structural and functional relevance of RNA in various cellular events. Herein, we demonstrate a two-step bioorthogonal chemical functionalization approach for the conjugation of multiple probes onto RNA transcripts using a 5-vinyl-modified uridine nucleotide analog (VUTP). VUTP, containing a structurally noninvasive and versatile chemoselective handle, was efficiently incorporated into RNA transcripts by in vitro transcription reactions. Furthermore, we show for the first time the use of a palladium-mediated oxidative Heck reaction in functionalizing RNA with fluorogenic probes by reacting vinyl-labeled RNA transcripts with appropriate boronic acid substrates. The vinyl label also permitted the post-transcriptional functionalization of RNA by a reagent-free inverse electron demand Diels-Alder (IEDDA) reaction in the presence of tetrazine substrates. Collectively, our results demonstrate that the incorporation of VUTP provides newer possibilities for the modular functionalization of RNA with variety of reporters.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN/química , Uridina Trifosfato/química , Compuestos de Vinilo/química , Animales , Reacción de Cicloadición , Electrones , Humanos
13.
Bioorg Med Chem Lett ; 27(21): 4849-4853, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28958619

RESUMEN

The G protein-coupled P2Y2 receptor, activated by ATP and UTP has been reported as a potential drug target for a wide range of important clinical conditions, such as tumor metastasis, kidney disorders, and in the treatment of inflammatory conditions. However, pharmacological studies on this receptor have been impeded by the limited reported availability of stable, potent and selective P2Y2R antagonists. This article describes the design and synthesis of AR-C118925, a potent and selective non-nucleotide antagonist of the P2Y2 receptor discovered using the endogenous P2Y2R agonist UTP as the chemical starting point.


Asunto(s)
Dibenzocicloheptenos/síntesis química , Antagonistas del Receptor Purinérgico P2Y/síntesis química , Pirimidinonas/síntesis química , Receptores Purinérgicos P2Y2/metabolismo , Uridina Trifosfato/química , Dibenzocicloheptenos/química , Dibenzocicloheptenos/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Unión Proteica , Antagonistas del Receptor Purinérgico P2Y/química , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Receptores Purinérgicos P2Y2/química , Uridina Trifosfato/metabolismo
14.
Bioorg Med Chem ; 25(21): 6007-6015, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28986114

RESUMEN

6-O-(2-Nitrobenzyl)guanosine and 4-O-(2-nitrobenzyl)uridine triphosphates (NBGTP, NBUTP) were synthesized, and their biochemical and photophysical properties were evaluated. We synthesized NBUTP using the canonical triphosphate synthesis method and NBGTP from 2',3'-O-TBDMS guanosine via a triphosphate synthesis method by utilizing mild acidic desilylation conditions. Deprotection of the nitrobenzyl group in NBGTP and NBUTP proceeded within 60s by UV irradiation at 365nm. Experiments using NBGTP or NBUTP in T7-RNA transcription reactions showed that NBGTP could be useful for the photocontrol of transcription by UV irradiation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Guanosina/farmacología , Transcripción Genética/efectos de los fármacos , Rayos Ultravioleta , Uridina Trifosfato/farmacología , Proteínas Virales/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Guanosina/análogos & derivados , Guanosina/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Transcripción Genética/genética , Uridina Trifosfato/síntesis química , Uridina Trifosfato/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
15.
Org Biomol Chem ; 14(24): 5832-42, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27173127

RESUMEN

The development of robust tools and practical RNA labeling strategies that would facilitate the biophysical analysis of RNA in both cell-free and cellular systems will have profound implications in the discovery of new RNA diagnostic tools and therapeutic strategies. In this context, we describe the development of a new alkyne-modified UTP analog, 5-(1,7-octadinyl)uridine triphosphate (ODUTP), which serves as an efficient substrate for the introduction of a clickable alkyne label into RNA transcripts by bacteriophage T7 RNA polymerase and mammalian cellular RNA polymerases. The ODU-labeled RNA is effectively used by reverse transcriptase to produce cDNA, a property which could be utilized in expanding the chemical space of a RNA library in the aptamer selection scheme. Further, the alkyne label on RNA provides a convenient tool for the posttranscriptional chemical functionalization with a variety of biophysical tags (fluorescent, affinity, amino acid and sugar) by using alkyne-azide cycloaddition reaction. Importantly, the ability of endogenous RNA polymerases to specifically incorporate ODUTP into cellular RNA transcripts enabled the visualization of newly transcribing RNA in cells by microscopy using click reactions. In addition to a clickable alkyne group, ODU contains a Raman scattering label (internal disubstituted alkyne), which exhibits characteristic Raman shifts that fall in the Raman-silent region of cells. Our results indicate that an ODU label could potentially facilitate two-channel visualization of RNA in cells by using click chemistry and Raman spectroscopy. Taken together, ODU represents a multipurpose ribonucleoside tool, which is expected to provide new avenues to study RNA in cell-free and cellular systems.


Asunto(s)
Imagen Molecular , ARN/química , Coloración y Etiquetado , Uridina Trifosfato/química , Secuencia de Bases , Química Clic , Células HeLa , Humanos , ARN/genética , Transcripción Genética
16.
Proc Natl Acad Sci U S A ; 110(5): E348-57, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23307808

RESUMEN

Hepatitis C virus (HCV) RNA-dependent RNA polymerase replicates the viral genomic RNA and is a primary drug target for antiviral therapy. Previously, we described the purification of an active and stable polymerase-primer-template elongation complex. Here, we show that, unexpectedly, the polymerase elongation complex can use NTPs to excise the terminal nucleotide in nascent RNA. Mismatched ATP, UTP, or CTP could mediate excision of 3'-terminal CMP to generate the dinucleoside tetraphosphate products Ap(4)C, Up(4)C, and Cp(4)C, respectively. Pre-steady-state kinetic studies showed that the efficiency of NTP-mediated excision was highest with ATP. A chain-terminating inhibitor, 3'deoxy-CMP, could also be excised through this mechanism, suggesting important implications for nucleoside drug potency and resistance. The nucleotide excision reaction catalyzed by recombinant hepatitis C virus polymerase was 100-fold more efficient than the corresponding reaction observed with HIV reverse transcriptase.


Asunto(s)
Hepacivirus/metabolismo , Nucleótidos/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/genética , Citidina Trifosfato/metabolismo , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Hepacivirus/enzimología , Hepacivirus/genética , Cinética , Modelos Químicos , Modelos Genéticos , Nucleótidos/química , Nucleótidos/genética , ARN Viral/genética , ARN Viral/metabolismo , Uridina Trifosfato/química , Uridina Trifosfato/genética , Uridina Trifosfato/metabolismo
17.
J Biol Chem ; 289(19): 13397-406, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24668813

RESUMEN

The voltage-dependent anion channel (VDAC) mediates and gates the flux of metabolites and ions across the outer mitochondrial membrane and is a key player in cellular metabolism and apoptosis. Here we characterized the binding of nucleotides to human VDAC1 (hVDAC1) on a single-residue level using NMR spectroscopy and site-directed mutagenesis. We find that hVDAC1 possesses one major binding region for ATP, UTP, and GTP that partially overlaps with a previously determined NADH binding site. This nucleotide binding region is formed by the N-terminal α-helix, the linker connecting the helix to the first ß-strand and adjacent barrel residues. hVDAC1 preferentially binds the charged forms of ATP, providing support for a mechanism of metabolite transport in which direct binding to the charged form exerts selectivity while at the same time permeation of the Mg(2+)-complexed ATP form is possible.


Asunto(s)
Adenosina Trifosfato/química , Guanosina Trifosfato/química , NAD/química , Uridina Trifosfato/química , Canal Aniónico 1 Dependiente del Voltaje/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Transporte Biológico Activo/fisiología , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , NAD/genética , NAD/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Uridina Trifosfato/genética , Uridina Trifosfato/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
18.
RNA ; 19(9): 1309-14, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23887148

RESUMEN

2-Selenouridine ((Se)U) is one of the naturally occurring modifications of Se-tRNAs ((Se)U-RNA) at the wobble position of the anticodon loop. Its role in the RNA-RNA interaction, especially during the mRNA decoding, is elusive. To assist the research exploration, herein we report the enzymatic synthesis of the (Se)U-RNA via 2-selenouridine triphosphate ((Se)UTP) synthesis and RNA transcription. Moreover, we have demonstrated that the synthesized (Se)UTP is stable and recognizable by T7 RNA polymerase. Under the optimized conditions, the transcription yield of (Se)U-RNA can reach up to 85% of the corresponding native RNA. Furthermore, the transcribed (Se)U-hammerhead ribozyme has the similar activity as the corresponding native, which suggests usefulness of (Se)U-RNAs in function and structure studies of noncoding RNAs, including the Se-tRNAs.


Asunto(s)
Compuestos de Organoselenio/síntesis química , ARN/genética , Transcripción Genética , Uridina Trifosfato/análogos & derivados , Anticodón , Catálisis , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Compuestos de Organoselenio/química , ARN/química , ARN Catalítico/química , ARN Catalítico/genética , ARN Mensajero/química , ARN Mensajero/genética , Uridina Trifosfato/síntesis química , Uridina Trifosfato/química , Proteínas Virales/química , Proteínas Virales/genética
19.
Biophys J ; 107(1): 156-64, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988350

RESUMEN

Molecular machines fueled by NTP play pivotal roles in a wide range of cellular activities. One common feature among NTP-driven molecular machines is that NTP binding is a major force-generating step among the elementary reaction steps comprising NTP hydrolysis. To understand the mechanism in detail,in this study, we conducted a single-molecule rotation assay of the ATP-driven rotary motor protein F1-ATPase using uridine triphosphate (UTP) and a base-free nucleotide (ribose triphosphate) to investigate the impact of a pyrimidine base or base depletion on kinetics and force generation. Although the binding rates of UTP and ribose triphosphate were 10(3) and 10(6) times, respectively, slower than that of ATP, they supported rotation, generating torque comparable to that generated by ATP. Affinity change of F1 to UTP coupled with rotation was determined, and the results again were comparable to those for ATP, suggesting that F1 exerts torque upon the affinity change to UTP via rotation similar to ATP-driven rotation. Thus, the adenine-ring significantly enhances the binding rate, although it is not directly involved in force generation. Taking into account the findings from another study on F1 with mutated phosphate-binding residues, it was proposed that progressive bond formation between the phosphate region and catalytic residues is responsible for the rotation-coupled change in affinity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Simulación de Dinámica Molecular , ATPasas de Translocación de Protón/química , Uridina Trifosfato/metabolismo , Adenosina Trifosfato/química , Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Unión Proteica , ATPasas de Translocación de Protón/metabolismo , Torque , Uridina Trifosfato/química
20.
J Biol Chem ; 288(12): 8128-8135, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23376345

RESUMEN

Reactive oxygen species are produced as side products of oxygen utilization and can lead to the oxidation of nucleic acids and their precursor nucleotides. Among the various oxidized bases, 8-oxo-7,8-dihydroguanine seems to be the most critical during the transfer of genetic information because it can pair with both cytosine and adenine. During the de novo synthesis of guanine nucleotides, GMP is formed first, and it is converted to GDP by guanylate kinase. This enzyme hardly acts on an oxidized form of GMP (8-oxo-GMP) formed by the oxidation of GMP or by the cleavage of 8-oxo-GDP and 8-oxo-GTP by MutT protein. Although the formation of 8-oxo-GDP from 8-oxo-GMP is thus prevented, 8-oxo-GDP itself may be produced by the oxidation of GDP by reactive oxygen species. The 8-oxo-GDP thus formed can be converted to 8-oxo-GTP because nucleoside-diphosphate kinase and adenylate kinase, both of which catalyze the conversion of GDP to GTP, do not discriminate 8-oxo-GDP from normal GDP. The 8-oxo-GTP produced in this way and by the oxidation of GTP can be used for RNA synthesis. This misincorporation is prevented by MutT protein, which has the potential to cleave 8-oxo-GTP as well as 8-oxo-GDP to 8-oxo-GMP. When (14)C-labeled 8-oxo-GTP was applied to CaCl2-permeabilized cells of a mutT(-) mutant strain, it could be incorporated into RNA at 4% of the rate for GTP. Escherichia coli cells appear to possess mechanisms to prevent misincorporation of 8-oxo-7,8-dihydroguanine into RNA.


Asunto(s)
Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/enzimología , ARN Bacteriano/biosíntesis , Adenosina Trifosfato/química , Adenilato Quinasa/química , Citidina Trifosfato/química , Nucleótidos de Desoxiguanina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Guanosina Monofosfato/química , Guanilato-Quinasas/química , Cinética , Nucleósido-Difosfato Quinasa/química , Oxidación-Reducción , Pirofosfatasas/química , ARN Bacteriano/metabolismo , Uridina Trifosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA