Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 46(5): 777-791.e10, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28514685

RESUMEN

Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Fragmentos de Péptidos/inmunología , Conformación Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Sitios de Unión , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/virología , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Filogenia , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/metabolismo
2.
Langmuir ; 40(9): 4762-4771, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385169

RESUMEN

The antigen density on the surface of HIV-based virus-like particles (VLPs) plays a crucial role in the improvement of HIV vaccine potency. HIV VLPs consist of a dense protein core, which is surrounded by a lipid bilayer and whose surface is usually decorated with antigenic glycoproteins. The successful downstream processing of these particles is challenging, and the high-resolution and cost-efficient purification of HIV-based VLPs has not yet been achieved. Chromatography, one of the major unit operations involved in HIV VLP purification strategies, is usually carried out by means of ion exchangers or ion-exchange membranes. Understanding the electrokinetic behavior of HIV-based VLPs may help to improve the adjustment and efficiency of the corresponding chromatographic processes. In this study, we investigated the electrokinetics and aggregation of both undecorated and decorated VLPs and interpreted the data from the perspective of the soft particle model developed by Ohshima (OSPM), which fails to fully predict the behavior of the studied VLPs. Post-Ohshima literature, and particularly the soft multilayer particle model developed by Langlet et al., provides an alternative theoretical framework to overcome the limits of the OSPM. We finally hypothesized that the electrophoretic mobility of HIV-based VLPs is controlled by an electrohydrodynamic interplay between envelope glycoproteins, lipid bilayer, and Gag envelope.


Asunto(s)
Infecciones por VIH , Vacunas de Partículas Similares a Virus , Humanos , Vacunas de Partículas Similares a Virus/química , Membrana Dobles de Lípidos , Infecciones por VIH/prevención & control , Glicoproteínas
3.
J Am Chem Soc ; 143(36): 14748-14765, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34490778

RESUMEN

The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qß. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qß VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.


Asunto(s)
Vacunas contra la COVID-19/metabolismo , COVID-19/epidemiología , COVID-19/prevención & control , Preparaciones de Acción Retardada/química , SARS-CoV-2/metabolismo , Vacunas de Subunidad/metabolismo , Animales , Comovirus , Simulación por Computador , Composición de Medicamentos , Epítopos/química , Calor , Humanos , Masculino , Ratones Endogámicos BALB C , Nanopartículas/química , Péptidos/química , Vacunación , Vacunas de Partículas Similares a Virus/química
4.
Chembiochem ; 22(22): 3199-3207, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34520613

RESUMEN

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.


Asunto(s)
Azidas/química , Vacunas contra la COVID-19/química , Gluconatos/química , Glicina/química , Histidina/química , Lactonas/química , Vacunas de Partículas Similares a Virus/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Azidas/inmunología , Vacunas contra la COVID-19/inmunología , Gluconatos/inmunología , Glicina/inmunología , Histidina/inmunología , Humanos , Lactonas/inmunología , Modelos Moleculares , Estructura Molecular , Vacunas de Partículas Similares a Virus/inmunología
5.
Biotechnol Bioeng ; 118(9): 3581-3592, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34143442

RESUMEN

Yellow fever (YF) is a life-threatening viral disease endemic in parts of Africa and Latin America. Although there is a very efficacious vaccine since the 1930s, YF still causes 29,000-60,000 annual deaths. During recent YF outbreaks there were issues of vaccine shortage of the current egg-derived vaccine; rare but fatal vaccine adverse effects occurred; and cases were imported to Asia, where the circulating mosquito vector could potentially start local transmission. Here we investigated the production of YF virus-like particles (VLPs) using stably transfected HEK293 cells. Process intensification was achieved by combining sequential FACS (fluorescence-activated cell sorting) rounds to enrich the stable cell pool in terms of high producers and the use of perfusion processes. At shaken-tube scale, FACS enrichment of cells allowed doubling VLP production, and pseudoperfusion cultivation (with daily medium exchange) further increased VLP production by 9.3-fold as compared to batch operation mode. At perfusion bioreactor scale, the use of an inclined settler as cell retention device showed operational advantages over an ATF system. A one-step steric exclusion chromatography purification allowed significant removal of impurities and is a promising technique for future integration of upstream and downstream operations. Characterization by different techniques confirmed the identity and 3D-structure of the purified VLPs.


Asunto(s)
Vacunas de Partículas Similares a Virus , Vacuna contra la Fiebre Amarilla , Virus de la Fiebre Amarilla/química , Células HEK293 , Humanos , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Vacuna contra la Fiebre Amarilla/química , Vacuna contra la Fiebre Amarilla/aislamiento & purificación
6.
Biotechnol Bioeng ; 118(10): 3926-3940, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34170511

RESUMEN

Virus-like particles (VLPs) are particulate structures, which are applied as vaccines or delivery vehicles. VLPs assemble from subunits, named capsomeres, composed of recombinantly expressed viral structural proteins. During downstream processing, in vivo-assembled VLPs are typically dis- and reassembled to remove encapsulated impurities and to improve particle morphology. Disassembly is achieved in a high-pH solution and by the addition of a denaturant or reducing agent. The optimal disassembly conditions depend on the VLP amino acid sequence and structure, thus requiring material-consuming disassembly experiments. To this end, we developed a low-volume and high-resolution disassembly screening that provides time-resolved insight into the VLP disassembly progress. In this study, two variants of C-terminally truncated hepatitis B core antigen were investigated showing different disassembly behaviors. For both VLPs, the best capsomere yield was achieved at moderately high urea concentration and pH. Nonetheless, their disassembly behaviors differed particularly with respect to disassembly rate and aggregation. Based on the high-throughput screening results, a diafiltration-based disassembly process step was developed. Compared with mixing-based disassembly, it resulted in higher yields of up to 0.84 and allowed for integrated purification. This process step was embedded in a filtration-based process sequence of disassembly, capsomere separation, and reassembly, considerably reducing high-molecular-weight species.


Asunto(s)
Proteínas de la Cápside/química , Vacunas contra Hepatitis B/química , Vacunas de Partículas Similares a Virus/química , Virión/química , Proteínas de la Cápside/genética , Vacunas contra Hepatitis B/genética , Ultrafiltración , Vacunas de Partículas Similares a Virus/genética , Virión/genética
7.
Biotechnol Bioeng ; 118(4): 1707-1720, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484156

RESUMEN

Expression of viral capsomeres in bacterial systems and subsequent in vitro assembly into virus-like particles is a possible pathway for affordable future vaccines. However, purification is challenging as viral capsomeres show poor binding to chromatography media. In this study, the behavior of capsomeres in unfractionated bacterial lysate was compared with that for purified capsomeres, with or without added microbial DNA, to better understand reasons for poor bioprocess behavior. We show that aggregates or complexes form through the interaction between viral capsomeres and DNA, especially in bacterial lysates rich in contaminating DNA. The formation of these complexes prevents the target protein capsomeres from accessing the pores of chromatography media. We find that protein-DNA interactions can be modulated by controlling the ionic strength of the buffer and that at elevated ionic strengths the protein-DNA complexes dissociate. Capsomeres thus released show enhanced bind-elute behavior on salt-tolerant chromatography media. DNA could therefore be efficiently removed. We believe this is the first report of the use of an optimized salt concentration that dissociates capsomere-DNA complexes yet enables binding to salt-tolerant media. Post purification, assembly experiments indicate that DNA-protein interactions can play a negative role during in vitro assembly, as DNA-protein complexes could not be assembled into virus-like particles, but formed worm-like structures. This study reveals that the control over DNA-protein interaction is a critical consideration during downstream process development for viral vaccines.


Asunto(s)
Proteínas de la Cápside , ADN Bacteriano/química , Escherichia coli , Vacunas de Partículas Similares a Virus , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/aislamiento & purificación , Cromatografía Liquida , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/aislamiento & purificación
8.
Protein Expr Purif ; 187: 105932, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34214599

RESUMEN

Virus-like particles (VLPs) have the potential to be used as display platforms to develop vaccines against infectious and non-infectious agents. However, most VLPs used as vaccine display platforms are derived from viruses that infect humans; unfortunately, most humans already have pre-existing antibodies against these platforms and thus, the immunogenicity of these vaccines may be compromised. VLP platforms derived from viruses that infect bacteria (bacteriophages), especially bacteriophages that infect bacteria, which do not colonize humans are less likely to have pre-existing antibodies against the platforms in the human population. In this study, we assessed whether two putative coat proteins (ORF13 and ORF14) derived from a thermophilic bacteriophage (ΦIN93) can be expressed and purified from a mesophilic bacterium such as E. coli. We also assessed whether expressed coat proteins can assemble to form VLPs. Truncated versions of ORF13 and ORF14 were successfully co-expressed in bacteria; the co-expressed truncated proteins formed oval structures that look like VLPs, but their sizes were less than those of an authentic ΦIN93 virus.


Asunto(s)
Bacteriófagos/metabolismo , Proteínas de la Cápside/metabolismo , Vacunas de Partículas Similares a Virus/metabolismo , Virus/metabolismo , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/metabolismo , Infecciones Bacterianas/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Escherichia coli , Regulación de la Expresión Génica , Humanos , Unión Proteica , Vacunas de Partículas Similares a Virus/química , Virus/genética
9.
Semin Immunol ; 34: 123-132, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28887001

RESUMEN

Virus-like particles (VLPs) have made giant strides in the field of vaccinology over the last three decades. VLPs constitute versatile tools in vaccine development due to their favourable immunological characteristics such as their size, repetitive surface geometry, ability to induce both innate and adaptive immune responses as well as being safe templates with favourable economics. Several VLP-based vaccines are commercially available including vaccines against Human Papilloma Virus (HPV) such as Cervarix®, Gardasil® & Gardasil9® and Hepatitis B Virus (HBV) including the 3rd generation Sci-B-Vac™. In addition, the first licensed malaria-VLP-based vaccine Mosquirix™ has been recently approved by the European regulators. Several other VLP-based vaccines are currently undergoing preclinical and clinical development. This review summarizes some of the major findings and recent advances in VLP-based vaccine development and technologies and outlines general principles that may be harnessed for induction of targeted immune responses.


Asunto(s)
Virus de la Hepatitis B/inmunología , Papillomaviridae/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Virosis/inmunología , Inmunidad Adaptativa , Animales , Proteínas de la Cápside , Vacunas contra Hepatitis B , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18 , Humanos , Inmunidad Innata , Vacunas contra Papillomavirus , Vacunas de Partículas Similares a Virus/química
10.
Nanomedicine ; 33: 102358, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484882

RESUMEN

Virus-like particle (VLP) vaccines have become one of the dominant vaccine candidates for foot-and-mouth disease (FMD). To further enhance the immunogenicity of VLP vaccines, gold nanocages (AuNCs) were selected as an adjuvant for the vaccine. Our experiments demonstrated that AuNCs had little biotoxicity in vivo and in vitro and improved the uptake of VLP in BHK-21 and RAW264.7 cell lines. The VLP-AuNCs activated DCs mainly through toll-like receptor 4 (TLR4) and promoted the secretion of IL-6, IL-1ß, and TNF-α. The conjugation of VLP and AuNCs triggered a strong immune response against FMD virus (FMDV) in mice and guinea pigs. The VLP-AuNCs significantly enhanced the proliferation of CD8+ T cells (P < 0.05) and the secretion of cellular immune-related cytokines (IFN-γ, P < 0.05; IL-12p70, P < 0.01) compared with VLP. The present study demonstrated that AuNCs, as a great potential adjuvant for FMDV VLP vaccines, significantly enhance the immune response.


Asunto(s)
Adyuvantes Inmunológicos/química , Portadores de Fármacos/química , Fiebre Aftosa/prevención & control , Oro/química , Nanopartículas del Metal/química , Vacunas de Partículas Similares a Virus/química , Vacunas Virales/química , Adyuvantes Inmunológicos/farmacología , Animales , Refuerzo Biomédico , Linfocitos T CD8-positivos , Permeabilidad de la Membrana Celular , Proliferación Celular , Citocinas/metabolismo , Composición de Medicamentos , Liberación de Fármacos , Femenino , Virus de la Fiebre Aftosa , Cobayas , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Células RAW 264.7 , Vacunas de Partículas Similares a Virus/farmacología , Vacunas Virales/farmacología
11.
Nanomedicine ; 33: 102359, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33476764

RESUMEN

Poly[di(carboxylatomethylphenoxy)phosphazene] (PCMP), a new member of polyphosphazene immunoadjuvant family, is synthesized. In vitro assessment of a new macromolecule revealed hydrolytic degradation profile and immunostimulatory activity comparable to its clinical stage homologue PCPP; however, PCMP was characterized by a beneficial reduced sensitivity to the ionic environment. In vivo evaluation of PCMP potency was conducted with human papillomavirus (HPV) virus-like particles (VLPs) based RG1-VLPs vaccine. In contrast with previously reported self-assembly of polyphosphazene adjuvants with proteins, which typically results in the formation of complexes with multimeric display of antigens, PCMP surface modified VLPs in a composition dependent pattern, which at a high polymer-to VLPs ratio led to stabilization of antigenic particles. Immunization experiments in mice demonstrated that PCMP adjuvanted RG1-VLPs vaccine induced potent humoral immune responses, in particular, on the level of highly desirable protective cross-neutralizing antibodies, and outperformed PCPP and Alhydrogel adjuvanted formulations.


Asunto(s)
Adyuvantes Inmunológicos/química , Materiales Biocompatibles/química , Compuestos Organofosforados/química , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/química , Polímeros/química , Vacunas de Partículas Similares a Virus/química , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Composición de Medicamentos , Liberación de Fármacos , Femenino , Humanos , Hidrogeles/química , Ratones Endogámicos BALB C , Vacunas contra Papillomavirus/farmacología , Vacunación , Vacunas de Partículas Similares a Virus/farmacología
12.
Proc Natl Acad Sci U S A ; 115(22): E4990-E4999, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29769329

RESUMEN

The insulin-responsive 12-transmembrane transporter GLUT4 changes conformation between an inward-open state and an outward-open state to actively facilitate cellular glucose uptake. Because of the difficulties of generating conformational mAbs against complex and highly conserved membrane proteins, no reliable tools exist to measure GLUT4 at the cell surface, follow its trafficking, or detect the conformational state of the protein. Here we report the isolation and characterization of conformational mAbs that recognize the extracellular and intracellular domains of GLUT4, including mAbs that are specific for the inward-open and outward-open states of GLUT4. mAbs against GLUT4 were generated using virus-like particles to present this complex membrane protein in its native conformation and using a divergent host species (chicken) for immunization to overcome immune tolerance. As a result, the isolated mAbs recognize conformational epitopes on native GLUT4 in cells, with apparent affinities as high as 1 pM and with specificity for GLUT4 across the human membrane proteome. Epitope mapping using shotgun mutagenesis alanine scanning across the 509 amino acids of GLUT4 identified the binding epitopes for mAbs specific for the states of GLUT4 and allowed the comprehensive identification of the residues that functionally control the GLUT4 inward-open and outward-open states. The mAbs identified here will be valuable molecular tools for monitoring GLUT4 structure, function, and trafficking, for differentiating GLUT4 conformational states, and for the development of novel therapeutics for the treatment of diabetes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Transportador de Glucosa de Tipo 4/inmunología , Transportador de Glucosa de Tipo 4/metabolismo , Vacunas de Partículas Similares a Virus/inmunología , Animales , Pollos , Mapeo Epitopo , Transportador de Glucosa de Tipo 4/química , Transportador de Glucosa de Tipo 4/genética , Células HEK293 , Humanos , Virus de la Leucemia Murina/genética , Modelos Moleculares , Dominios Proteicos , Vacunas de Partículas Similares a Virus/química
13.
Molecules ; 26(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34361589

RESUMEN

Virus-like particles are excellent inducers of the adaptive immune response of humans and are presently being used as scaffolds for the presentation of foreign peptides and antigens derived from infectious microorganisms for subunit vaccine development. The most common approaches for peptide and antigen presentation are translational fusions and chemical coupling, but some alternatives that seek to simplify the coupling process have been reported recently. In this work, an alternative platform for coupling full antigens to virus-like particles is presented. Heterodimerization motifs inserted in both Tobacco etch virus coat protein and green fluorescent protein directed the coupling process by simple mixing, and the obtained complexes were easily taken up by a macrophage cell line.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos , Potyvirus , Vacunas de Partículas Similares a Virus , Animales , Antígenos/química , Antígenos/inmunología , Ratones , Potyvirus/química , Potyvirus/inmunología , Células RAW 264.7 , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología
14.
Angew Chem Int Ed Engl ; 60(23): 12847-12851, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33750007

RESUMEN

Structure determination of adjuvant-coupled antigens is essential for rational vaccine development but has so far been hampered by the relatively low antigen content in vaccine formulations and by their heterogeneous composition. Here we show that magic-angle spinning (MAS) solid-state NMR can be used to assess the structure of the influenza virus hemagglutinin stalk long alpha helix antigen, both in its free, unformulated form and once chemically coupled to the surface of large virus-like particles (VLPs). The sensitivity boost provided by high-field dynamic nuclear polarization (DNP) and proton detection at fast MAS rates allows to overcome the penalty associated with the antigen dilution. Comparison of the MAS NMR fingerprints between the free and VLP-coupled forms of the antigen provides structural evidence of the conservation of its native fold upon bioconjugation. This work demonstrates that high-sensitivity MAS NMR is ripe to play a major role in vaccine design, formulation studies, and manufacturing process development.


Asunto(s)
Antígenos Virales/análisis , Vacunas de Partículas Similares a Virus/química , Resonancia Magnética Nuclear Biomolecular
15.
Angew Chem Int Ed Engl ; 60(1): 321-330, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32886840

RESUMEN

Matching of symmetry at interfaces is a fundamental obstacle in molecular assembly. Virus-like particles (VLPs) are important vaccine platforms against pathogenic threats, including Covid-19. However, symmetry mismatch can prohibit vaccine nanoassembly. We established an approach for coupling VLPs to diverse antigen symmetries. SpyCatcher003 enabled efficient VLP conjugation and extreme thermal resilience. Many people had pre-existing antibodies to SpyTag:SpyCatcher but less to the 003 variants. We coupled the computer-designed VLP not only to monomers (SARS-CoV-2) but also to cyclic dimers (Newcastle disease, Lyme disease), trimers (influenza hemagglutinins), and tetramers (influenza neuraminidases). Even an antigen with dihedral symmetry could be displayed. For the global challenge of influenza, SpyTag-mediated display of trimer and tetramer antigens strongly induced neutralizing antibodies. SpyCatcher003 conjugation enables nanodisplay of diverse symmetries towards generation of potent vaccines.


Asunto(s)
Vacunas contra la COVID-19/química , Nanoestructuras/química , Vacunas de Partículas Similares a Virus/química , Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales , Antígenos Virales/química , Antígenos Virales/inmunología , Congelación , Humanos , Modelos Moleculares
16.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375592

RESUMEN

Cowpea mosaic virus (CPMV) is a plant virus that has been developed for multiple biomedical and nanotechnology applications, including immunotherapy. Two key platforms are available: virus nanoparticles (VNPs) based on the complete CMPV virion, including the genomic RNA, and virus-like nanoparticles (VLPs) based on the empty CPMV (eCPMV) virion. It is unclear whether these platforms differ in terms of immunotherapeutic potential. We therefore compared their physicochemical properties and immunomodulatory activities following in situ vaccination of an aggressive ovarian tumor mouse model (ID8-Defb29/Vegf-A). In physicochemical terms, CPMV and eCPMV were very similar, and both significantly increased the survival of tumor-bearing mice and showed promising antitumor efficacy. However, they demonstrated distinct yet overlapping immunostimulatory effects due to the presence of virus RNA in wild-type particles, indicating their suitability for different immunotherapeutic strategies. Specifically, we found that the formulations had similar effects on most secreted cytokines and immune cells, but the RNA-containing CPMV particles were uniquely able to boost populations of potent antigen-presenting cells, such as tumor-infiltrating neutrophils and activated dendritic cells. Our results will facilitate the development of CPMV and eCPMV as immunotherapeutic vaccine platforms with tailored responses.IMPORTANCE The engagement of antiviral effector responses caused by viral infection is essential when using viruses or virus-like particles (VLPs) as an immunotherapeutic agent. Here, we compare the chemophysical and immunostimulatory properties of wild-type cowpea mosaic virus (CPMV) (RNA containing) and eCPMV (RNA-free VLPs) produced from two expression systems (agrobacterium-based plant expression system and baculovirus-insect cell expression). CPMV and eCPMV could each be developed as novel adjuvants to overcome immunosuppression and thus promote tumor regression in ovarian cancer (and other tumor types). To our knowledge, this is the first study to define the immunotherapeutic differences between CPMV and eCPMV, which is essential for the further development of biomedical applications for plant viruses and the selection of rational combinations of immunomodulatory reagents.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer/inmunología , Comovirus/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Células Presentadoras de Antígenos/inmunología , Vacunas contra el Cáncer/administración & dosificación , Comovirus/química , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunoterapia , Ratones , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/terapia , Tasa de Supervivencia , Vacunación , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Virión/química , Virión/inmunología
17.
Fish Shellfish Immunol ; 100: 49-57, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32130976

RESUMEN

In most breeding schemes, fish are cultured in enclosed spaces, which greatly increases the risk of outbreaks where the onset of infectious diseases can cause massive mortality and enormous economic losses. Vaccination is the most effective and long-term measure for improving the basic make-up of a fish farm. As the relationship between antibody and antigen is similar to that between screw and nut, similarity in the shape or nature of the vaccine antigen to the original pathogen is important for achieving a satisfactory/good/excellent antibody response with a vaccine. Virus-like particles (VLPs) best fulfil this requirement as their tertiary structure mimics that of the native virus. For this reason, VLPs have been attracting attention as next-generation vaccines for humans and animals, and the effects of various types of VLP vaccines on humans and livestock have been examined. Recent studies of VLP-based fish vaccines indicate that these vaccines are promising, and raise hopes of extending their use in the near future. In this review, the structural properties and immunogenicity of VLP-based vaccines against fish viruses such as infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (SAV), nervous necrosis virus (NNV) and iridovirus are introduced/summarized. The NNV VLP vaccine is the most-studied VLP-based vaccine against fish viruses. Therefore, the current status of NNV VLP research is highlighted in this review, which deals with the advantages of using VLPs as vaccines, and the expression systems for producing them. Moreover, the need for lyophilized VLPs and oral VLP delivery is discussed. Finally, future directions for the development of VLP vaccines in the fish vaccine field are considered.


Asunto(s)
Enfermedades de los Peces/prevención & control , Vacunación/veterinaria , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Virosis/veterinaria , Animales , Anticuerpos Antivirales/inmunología , Acuicultura , Enfermedades de los Peces/inmunología , Vacunación/métodos , Vacunación/tendencias , Virosis/inmunología , Virosis/prevención & control , Virus
18.
BMC Vet Res ; 16(1): 45, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32028949

RESUMEN

BACKGROUND: Porcine circovirus type 2 (PCV2) is an economically important pathogen in the swine industry worldwide. Vaccination remains the principal tool to control PCV2-associated diseases (PCVADs). Current vaccines do not eliminate viral shedding in the environment. To enhance the efficacy of PCV2 vaccines, recombinant virus-like particles (VLPs) of PCV2 were generated by fusing a truncated form of flagellin FliC (TFlg: 85-111aa) with the PCV2 capsid protein (Cap). RESULTS: The recombinant proteins were expressed in Escherichia coli and detected using Western blotting. The abilities of the recombinant proteins to assemble into VLPs were observed under transmission electron microscopy (TEM). The protective immune responses of recombinant VLPs were further evaluated by immunization of mice. The results showed that insertion of TFlg into C terminal of the Cap protein did not affect the formation of VLPs and boosted both humoral and cellular immune responses in mice. After a challenge with PCV2, in the Cap-TFlg vaccinated group, viremia was milder and viral loads were lower as compared with those in the Cap vaccinated group. CONCLUSION: These results suggest that recombinant VLPs of PCV2 containing a TFlg adjuvant can be used as a promising PCV2 vaccine candidate.


Asunto(s)
Circovirus/inmunología , Flagelina/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Proteínas de la Cápside/inmunología , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/prevención & control , Circovirus/genética , Escherichia coli , Femenino , Inmunidad Celular , Inmunidad Humoral , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología , Vacunas de Partículas Similares a Virus/química , Vacunas Virales/química
19.
Nanomedicine ; 28: 102223, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32422220

RESUMEN

Personalized cancer vaccine which targets neoepitopes shows great promise for cancer treatment. However, rapid preparation is a critical challenge for clinical application of personalized cancer vaccine. Genetic recombination and chemical modification are a time-consuming "trial and error" pattern for making vaccines. Here we first constructed a platform for peptide vaccine preparation by inserting SpyCatcher into the major immunodominant region (MIR) of hepatitis B core protein (HBc) (1-183). The resulted recombinant protein HBc(1-183)-SpyCatcher (HBc(1-183)-S) assembled to virus-like particles (VLPs) and readily bound to SpyTag conjugated with OVA epitope peptides by just mixing, forming HBc(1-183)-S-OVA. HBc(1-183)-S-OVA VLPs effectively induced dendritic cell maturation. Our further results indicated that HBc(1-183)-S-OVA VLPs vaccination inhibited tumor growth in both prophylactic and treatment ways in E.G7-OVA tumor bearing mice by generating significant OVA-specific cytotoxic T lymphocyte responses. Our study provides a simple, rapid, efficient and universal HBc-based platform for the preparation of personalized cancer vaccine.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Antígenos del Núcleo de la Hepatitis B/inmunología , Animales , Línea Celular , Dispersión Dinámica de Luz , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Medicina de Precisión/métodos , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología
20.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070691

RESUMEN

Enterovirus 71 (EV71) is the major causative agent of severe hand, foot, and mouth disease, which affects millions of young children in the Asia-Pacific region annually. In this study, we engineered a novel EV71 virus-like particle (VLP) that lacks VP4 (therefore designated VLPΔVP4) and investigated its structure, antigenicity, and vaccine potential. The cryo-electron microscopy (cryo-EM) structure of VLPΔVP4 was reconstructed to 3.71-Å resolution. Results from structural and biochemical analyses revealed that VLPΔVP4 resembles the end product of the viral uncoating process, the 80S empty capsid. VLPΔVP4 is able to elicit high-titer neutralizing antibodies and to fully protect mice against lethal viral challenge. Mechanistic studies showed that, at the cellular level, the anti-VLPΔVP4 sera exert neutralization effects at both pre- and postattachment stages by inhibiting both virus attachment and internalization, and at the molecular level, the antisera can block multiple interactions between EV71 and its key receptors. Our study gives a better understanding of EV71 capsid assembly and provides important information for the design and development of new-generation vaccines for EV71, and perhaps for other enteroviruses, as well.IMPORTANCE Enterovirus 71 (EV71) infection may lead to severe hand, foot, and mouth disease, with significant morbidity and mortality. Knowledge regarding EV71 particle assembly remains limited. Here, we report the generation and characterization of a novel EV71 virus-like particle that lacks the VP4 capsid subunit protein. This particle, termed VLPΔVP4, structurally mimics the 80S empty capsid, which is the end stage of EV71 uncoating. We further show that VLPΔVP4 exhibits desirable immunogenicity and protective efficacy in proof-of-concept studies. In addition, the inhibitory mechanisms of the VLPΔVP4-induced antibodies are unraveled at both the cellular and molecular levels. Our work provides the first evidence of picornaviral particle assembly in the complete absence of VP4 and identifies VLPΔVP4 as an improved EV71 vaccine candidate with desirable traits. These findings not only enhance our understanding of particle assembly and uncoating of picornaviruses, but also provide important information for structure-guided vaccine design for EV71 and other enteroviruses.


Asunto(s)
Cápside/química , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/prevención & control , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Microscopía por Crioelectrón , Enterovirus/inmunología , Humanos , Ratones , Modelos Moleculares , Pruebas de Neutralización , Vacunas de Partículas Similares a Virus/genética , Células Vero , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Acoplamiento Viral , Desencapsidación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA