Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.129
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Physiol ; 84: 611-629, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34724436

RESUMEN

The use of electronic (e)-cigarettes was initially considered a beneficial solution to conventional cigarette smoking cessation. However, paradoxically, e-cigarette use is rapidly growing among nonsmokers, including youth and young adults. In 2019, this rapid growth resulted in an epidemic of hospitalizations and deaths of e-cigarette users (vapers) due to acute lung injury; this novel disease was termed e-cigarette or vaping use-associated lung injury (EVALI). Pathophysiologic mechanisms of EVALI likely involve cytotoxicity and neutrophilic inflammation caused by inhaled chemicals, but further details remain unknown. The undiscovered mechanisms of EVALI are a barrier to identifying biomarkers and developing therapeutics. Furthermore, adverse effects of e-cigarette use have been linked to chronic lung diseases and systemic effects on multiple organs. In this comprehensive review, we discuss the diverse spectrum of vaping exposures, epidemiological and clinical reports, and experimental findings to provide a better understanding of EVALI and the adverse health effects of chronic e-cigarette exposure.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Lesión Pulmonar , Neumonía , Vapeo , Adolescente , Biomarcadores , Humanos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/epidemiología , Neumonía/etiología , Vapeo/efectos adversos , Vapeo/epidemiología , Adulto Joven
2.
Annu Rev Pharmacol Toxicol ; 62: 301-322, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34555289

RESUMEN

Since the spread of tobacco from the Americas hundreds of years ago, tobacco cigarettes and, more recently, alternative tobacco products have become global products of nicotine addiction. Within the evolving alternative tobacco product space, electronic cigarette (e-cigarette) vaping has surpassed conventional cigarette smoking among adolescents and young adults in the United States and beyond. This review describes the experimental and clinical evidence of e-cigarette toxicity and deleterious health effects. Adverse health effects related to e-cigarette aerosols are influenced by several factors, including e-liquid components, physical device factors, chemical changes related to heating, and health of the e-cigarette user (e.g., asthmatic). Federal, state, and local regulations have attempted to govern e-cigarette flavors, manufacturing, distribution, and availability, particularly to underaged youths. However, the evolving e-cigarette landscape continues to impede timely toxicological studies and hinder progress made toward our understanding of the long-term health consequence of e-cigarettes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Humanos , Estados Unidos , Vapeo/efectos adversos , Adulto Joven
3.
Circ Res ; 132(9): 1168-1180, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104558

RESUMEN

The use of electronic nicotine delivery systems, specifically electronic cigarettes (e-cig), has risen dramatically within the last few years; the demographic purchasing these devices is now predominantly adolescents that are not trying to quit the use of traditional combustible cigarettes, but rather are new users. The composition and appearance of these devices has changed since their first entry into the market in the late 2000s, but they remain composed of a battery and aerosol delivery system that is used to deliver breakdown products of propylene glycol/vegetable glycerin, flavorings, and potentially nicotine or other additives. Manufacturers have also adjusted the type of nicotine that is used within the liquid to make the inhalation more palatable for younger users, further affecting the number of youth who use these devices. Although the full spectrum of cardiovascular and cardiometabolic consequences of e-cig use is not fully appreciated, data is beginning to show that e-cigs can cause both short- and long-term issues on cardiac function, vascular integrity and cardiometabolic issues. This review will provide an overview of the cardiovascular, cardiometabolic, and vascular implications of the use of e-cigs, and the potential short- and long-term health effects. A robust understanding of these effects is important in order to inform policy makers on the dangers of e-cigs use.


Asunto(s)
Enfermedades Cardiovasculares , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Adolescente , Nicotina/efectos adversos , Pulmón/metabolismo , Vapeo/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/metabolismo
4.
J Neurosci ; 43(8): 1360-1374, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36690450

RESUMEN

Electronic nicotine delivery systems (ENDS) are distinctly different from combustible cigarettes because of the availability of flavor options. Subjective measures have been used to demonstrate that adults and adolescents prefer flavors for various reasons; (1) they are pleasing and (2) they mask the harshness of nicotine. Despite this, there have been few investigations into the molecular interactions that connect chemical flavorants to smoking or vaping-related behaviors. Here, we investigated the effects of three chemical flavorants (hexyl acetate, ethyl acetate, and methylbutyl acetate) that are found in green apple (GA) ENDS e-liquids but are also found in other flavor categories. We used a translationally relevant vapor self-administration mouse model and observed that adult male and female mice self-administered GA flavorants in the absence of nicotine. Using α4-mCherryα6-GFP nicotinic acetylcholine receptor (nAChR) mice, we observed that mice exposed to GA flavorants exhibited a sex-specific increase (upregulation) of nAChRs that was also brain-region specific. Electrophysiology revealed that mice exposed to GA flavorants exhibited enhanced firing of ventral tegmental area dopamine neurons. Fast-scan cyclic voltammetry revealed that electrically stimulated dopamine release in the nucleus accumbens core is increased in mice that are exposed to GA flavorants. These effects were similarly observed in the medial habenula. Overall, these findings demonstrate that ENDS flavors alone change neurobiology and may promote vaping-dependent behaviors in the absence of nicotine. Furthermore, the flavorant-induced changes in neurobiology parallel those caused by nicotine, which highlights the fact that nonmenthol flavorants may contribute to or enhance nicotine reward and reinforcement.SIGNIFICANCE STATEMENT The impact of flavors on vaping is a hotly debated topic; however, few investigations have examined this in a model that is relevant to vaping. Although a full understanding of the exact mechanism remains undetermined, our observations reveal that chemical flavorants in the absence of nicotine alter brain circuits relevant to vaping-related behavior. The fact that the flavorants investigated here exist in multiple flavor categories of vaping products highlights the fact that a multitude of flavored vaping products may pose a risk toward vaping-dependent behaviors even without the impact of nicotine. Furthermore, as the neurobiological changes have an impact on neurons of the reward system, there exists the possibility that nonmenthol flavorants may enhance nicotine reward and reinforcement.


Asunto(s)
Receptores Nicotínicos , Productos de Tabaco , Vapeo , Masculino , Femenino , Ratones , Animales , Nicotina/farmacología , Neurobiología , Refuerzo en Psicología
5.
Dev Biol ; 501: 111-123, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353105

RESUMEN

Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced, and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Femenino , Embarazo , Animales , Humanos , Ratones , Vapeo/efectos adversos , Nicotina/efectos adversos , Nicotina/metabolismo , Pulmón/metabolismo , Cigarrillo Electrónico a Vapor/efectos adversos
6.
Circulation ; 148(8): 703-728, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37458106

RESUMEN

Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.


Asunto(s)
Sistema Cardiovascular , Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Adulto Joven , Animales , Humanos , Estados Unidos/epidemiología , Vapeo/efectos adversos , American Heart Association , Nicotina
7.
Stroke ; 55(3): 735-746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38323450

RESUMEN

BACKGROUND: Nicotine-containing electronic cigarette (EC) vaping has become popular worldwide, and our understanding of the effects of vaping on stroke outcomes is elusive. Using a rat model of transient middle cerebral artery occlusion, the current exploratory study aims to evaluate the sex-dependent effects of EC exposure on brain energy metabolism and stroke outcomes. METHODS: Adult Sprague-Dawley rats of both sexes were randomly assigned to air/EC vapor (5% nicotine Juul pods) exposure for 16 nights, followed by randomization into 3 cohorts. The first cohort underwent exposure to air/EC preceding randomization to transient middle cerebral artery occlusion (90 minutes) or sham surgery, followed by survival for 21 days. During the survival period, rats underwent sensorimotor and Morris water maze testing. Subsequently, brains were collected for histopathology. A second cohort was exposed to air/EC after which brains were collected for unbiased metabolomics analysis. The third cohort of animals was exposed to air/EC and received transient middle cerebral artery occlusion/sham surgery, and brain tissue was collected 24 hours later for biochemical analysis. RESULTS: In females, EC significantly increased (P<0.05) infarct volumes by 94% as compared with air-exposed rats, 165±50 mm3 in EC-exposed rats, and 85±29 mm3 in air-exposed rats, respectively, while in males such a difference was not apparent. Morris water maze data showed significant deficits in spatial learning and working memory in the EC sham or transient middle cerebral artery occlusion groups compared with the respective air groups in rats of both sexes (P<0.05). Thirty-two metabolites of carbohydrate, glycolysis, tricarboxylic acid cycle, and lipid metabolism were significantly altered (P≤0.05) due to EC, 23 of which were specific for females. Steady-state protein levels of hexokinase significantly decreased (P<0.05) in EC-exposed females; however, these changes were not seen in males. CONCLUSIONS: Even brief EC exposure over 2 weeks impacts brain energy metabolism, exacerbates infarction, and worsens poststroke cognitive deficits in working memory more in female than male rats.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Nicotina/efectos adversos , Infarto de la Arteria Cerebral Media/metabolismo
8.
Pflugers Arch ; 476(6): 875-888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376568

RESUMEN

Electronic cigarettes (e-cigarettes), as alternative nicotine delivery methods, has rapidly increased among youth and adults in recent years. However, cardiovascular safety is an important consideration regarding e-cigarettes usage. e-cigarette emissions, including nicotine, propylene glycol, flavorings, nitrosamine, and metals, might have adverse effects on cardiovascular health. A large body of epidemiological evidence has indicated that e-cigarettes are considered an independent risk factor for increased rates of cardiovascular disease occurrence and death. The incidence and mortality of various types of cardiovascular disease, such as cardiac arrhythmia, hypertension, acute coronary syndromes, and heart failure, have a modest growth in vapers (users of e-cigarettes). Although the underlying biological mechanisms have not been fully understood, studies have validated that oxidative stress, inflammation, endothelial dysfunction, atherosclerosis, hemodynamic effects, and platelet function play important roles in which e-cigarettes work in the human body. This minireview consolidates and discusses the epidemiological and biological links between e-cigarettes and various types of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Sistemas Electrónicos de Liberación de Nicotina , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Vapeo/efectos adversos , Vapeo/epidemiología , Animales , Nicotina/efectos adversos , Nicotina/administración & dosificación
9.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L175-L189, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147795

RESUMEN

Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Our objectives were to investigate the impact of EC aerosols on SARS-CoV-2 infection of human bronchial epithelial cells and identify the causative chemical(s). Fully differentiated human bronchial epithelial tissues (hBETs) were exposed at the air-liquid interface (ALI) to aerosols produced from JUUL "Virginia Tobacco" and BLU ECs, as well as nicotine, propylene glycol (PG), vegetable glycerin (VG), and benzoic acid, and infection was then evaluated with SARS-CoV-2 pseudoparticles. Pseudoparticle infection of hBETs increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU ECs; however, JUUL EC aerosols did not increase infection compared with controls. Increased infection in PG/VG alone was due to enhanced endocytosis, whereas increased infection in PG/VG plus nicotine or in BLU ECs was caused by nicotine-induced elevation of the aerosol's pH, which correlated with increased transmembrane protease, serine 2 (TMPRSS2) activity. Notably, benzoic acid in JUUL aerosols mitigated the enhanced infection caused by PG/VG or nicotine, offering protection that lasted for at least 48 h after exposure. In conclusion, the study demonstrates that EC aerosols can impact susceptibility to SARS-CoV-2 infection depending on their specific ingredients. PG/VG alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by certain ingredients. These findings highlight the complex relationship between ECs and SARS-CoV-2 susceptibility, emphasizing the importance of considering the specific aerosol ingredients when evaluating the potential effects of ECs on infection risk.NEW & NOTEWORTHY Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. We investigated the impact of EC aerosols and their ingredients on SARS-CoV-2 infection of human bronchial epithelial cells. Our data show that specific ingredients in EC aerosols impact the susceptibility to SARS-CoV-2 infection. Propylene glycol (PG)/vegetable glycerin (VG) alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by these ingredients.


Asunto(s)
COVID-19 , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Nicotina , Glicerol , SARS-CoV-2 , Aerosoles y Gotitas Respiratorias , Propilenglicol , Ácido Benzoico
10.
Thorax ; 79(2): 163-168, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-37582630

RESUMEN

RATIONALE: Electronic cigarette (e-cigarette) aerosol contains volatile aldehydes, including flavourings and oxidant metals with known pulmonary toxicity. OBJECTIVES: To evaluate the associations of e-cigarette use with symptoms of wheeze, bronchitic symptoms and shortness of breath (SOB) across 4 years of prospective data. METHODS: Participants completed questionnaires on respiratory symptoms and past 30-day e-cigarette, cigarette and cannabis use in 2014 (wave 1; N=2094; mean age 17.3 years, SD=0.6 years). Follow-up information was collected in 2015 (wave 2; n=1609), 2017 (wave 3; n=1502) and 2018 (wave 4; n=1637) using online surveys. Mixed-effects logistic regression models evaluated associations of e-cigarette use with respiratory symptoms. MEASUREMENTS AND MAIN RESULTS: Participants were mostly Hispanic white (51.8%) and evenly representative by sex (49.6% female; 50.4% male). Compared with never e-cigarette users, past 30-day e-cigarette users reported increased odds of wheeze (OR 1.81; 95% CI 1.28, 2.56), bronchitic symptoms (OR 2.06; 95% CI 1.58, 2.69) and SOB (OR 1.78; 95% CI 1.23, 2.57), adjusting for study wave, age, sex, race, lifetime asthma diagnosis and parental education. Effect estimates were attenuated (wheeze (OR 1.41; 95% CI 0.99, 2.01), bronchitic symptoms (OR 1.55; 95% CI 1.18, 2.05), SOB (OR 1.48; 95% CI 1.01, 2.18)), after adjusting additionally for current cigarette use, cannabis use and secondhand exposure to e-cigarettes/cigarettes/cannabis. CONCLUSIONS: E-cigarette use in young adults was associated with respiratory symptoms, independent of combustible cannabis and cigarette exposures.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Vapeo/efectos adversos , Vapeo/epidemiología , Estudios Prospectivos , Encuestas y Cuestionarios , Disnea , Ruidos Respiratorios/etiología
11.
Thorax ; 79(7): 662-669, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38755014

RESUMEN

BACKGROUND: Social media may influence children and young people's health behaviour, including cigarette and e-cigarette use. METHODS: We analysed data from participants aged 10-25 years in the UK Household Longitudinal Study 2015-2021. The amount of social media use reported on a normal weekday was related to current cigarette smoking and e-cigarette use. Generalised estimating equation (GEE) logistic regression models investigated associations of social media use with cigarette smoking and e-cigarette use. Models controlled for possible confounders including age, sex, country of UK, ethnicity, household income and use of cigarette/e-cigarettes by others within the home. RESULTS: Among 10 808 participants with 27 962 observations, current cigarette smoking was reported by 8.6% of participants for at least one time point, and current e-cigarette use by 2.5% of participants. In adjusted GEE models, more frequent use of social media was associated with greater odds of current cigarette smoking. This was particularly apparent at higher levels of use (eg, adjusted odds ratio (AOR) 3.60, 95% CI 2.61 to 4.96 for ≥7 hours/day vs none). Associations were similar for e-cigarettes (AOR 2.73, 95% CI 1.40 to 5.29 for ≥7 hours/day social media use vs none). There was evidence of dose-response in associations between time spent on social media and both cigarette and e-cigarette use (both p<0.001). Analyses stratified by sex and household income found similar associations for cigarettes; however, for e-cigarettes associations were concentrated among males and those from higher household income groups. CONCLUSIONS: Social media use is associated with increased risk of cigarette smoking and e-cigarette use. There is a need for greater research on this issue as well as potential policy responses.


Asunto(s)
Fumar Cigarrillos , Medios de Comunicación Sociales , Humanos , Adolescente , Masculino , Reino Unido/epidemiología , Femenino , Medios de Comunicación Sociales/estadística & datos numéricos , Estudios Longitudinales , Niño , Fumar Cigarrillos/epidemiología , Adulto Joven , Adulto , Sistemas Electrónicos de Liberación de Nicotina/estadística & datos numéricos , Factores de Tiempo , Vapeo/epidemiología
12.
Am J Physiol Heart Circ Physiol ; 326(3): H490-H496, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133618

RESUMEN

Vaping has risen substantially in recent years, particularly among young adults. Electronic (e-) hookahs are a newer category of vaping devices touted as safer tobacco alternatives. Although e-hookah vaping acutely reduces endothelial function, the role of nicotine and the mechanisms by which it may impair endothelial function remain understudied. In a randomized crossover study, we investigated the acute effects of vaping e-hookah, with and without nicotine, as compared with sham on endothelial function assessed by brachial artery flow-mediated dilation (FMD), among 18 overtly healthy young adults. To determine the role of changes in circulating factors in plasma on endothelial cell function, human umbilical vein endothelial cells (HUVECs) were cultured with participants' plasma, and acetylcholine-stimulated nitric oxide (NO) production and basal reactive oxygen species (ROS) bioactivity were assessed. Plasma nicotine was measured before and after the sessions. E-hookah vaping with nicotine, which acutely increased heart rate (HR) by 8 ± 3 beats/min and mean arterial pressure (MAP) by 7 ± 2 mmHg (means ± SE; P < 0.05), decreased endothelial-dependent FMD by 1.57 ± 0.19%Δ (P = 0.001), indicating impairment in endothelial function. Vaping e-hookah without nicotine, which mildly increased hemodynamics (HR, 2 ± 2 beats/min and MAP 1 ± 1 mmHg; P = ns), did not significantly impair endothelial function. No changes were observed after sham vaping. HUVECs cultured with participants' plasma after versus before e-hookah vaping with nicotine, but not without nicotine or sham vaping, exhibited reductions in endothelial cell NO bioavailability and increases in ROS bioactivity (P < 0.05). Plasma nicotine concentrations increased after vaping e-hookah with nicotine (6.7 ± 1.8 ng/mL; P = 0.002), whereas no changes were observed after vaping e-hookah without nicotine or sham (P = ns). Acute e-hookah vaping induces endothelial dysfunction by impairing NO bioavailability associated with increased ROS production, and these effects are attributable to nicotine, not to nonnicotine constituents, present in the flavored e-liquid.NEW & NOTEWORTHY Despite safety claims heavily advertised by the hookah tobacco industry, acute e-hookah vaping induces in vivo endothelial dysfunction by impairing ex vivo NO bioavailability associated with increased ROS production. These effects are attributable to nicotine, not to nonnicotine constituents, present in the flavored e-liquid.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Pipas de Agua , Vapeo , Fumar en Pipa de Agua , Adulto Joven , Humanos , Vapeo/efectos adversos , Nicotina , Células Endoteliales , Especies Reactivas de Oxígeno , Estudios Cruzados
13.
BMC Med ; 22(1): 213, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807205

RESUMEN

BACKGROUND: Prevalence of youth nicotine vaping has increased, heightening concerns around negative health effects. This study aimed to compare self-reported respiratory symptoms among youth by vaping behaviours. METHODS: Participants (n = 39,214) aged 16-19 from the 2020 and 2021 International Tobacco Control Policy Evaluation Project (ITC) Youth Tobacco and Vaping Surveys (Canada, England, US). Weighted multivariable logistic regression assessed associations between reporting any of five respiratory symptoms in the past week (shortness of breath, wheezing, chest pain, phlegm, cough) and: past 30-day smoking and/or vaping; lifetime/current vaping. Among past-30-day vapers (n = 4644), we assessed associations between symptoms and vaping frequency, use of nicotine salts, usual flavour and device type(s). RESULTS: Overall, 27.8% reported experiencing any of the five respiratory symptoms. Compared with youth who had only vaped, those who had only smoked had similar odds of symptoms [adjusted odds ratio, OR (95% confidence interval, CI): 0.97 (0.85-1.10)], those who both smoked and vaped had higher odds [1.26 (1.12-1.42)], and those who had done neither, lower odds [0.67 (0.61-0.72)]. Compared with those who had never vaped, past use, experimentation and current regular or occasional use were all associated with higher odds. Reporting usually using nicotine salts was associated with higher odds of symptoms [1.43 (1.22-1.68)] than non-salt but was often uncertain. Compared with tobacco flavour (including with menthol), menthol/mint and sweets flavours were associated with similar odds; fruit [1.44 (1.07-1.93)], multiple [1.76 (1.30-2.39)] and 'other' [2.14 (1.45-3.16)] flavours with higher odds. All device types were associated with similar odds. CONCLUSIONS: Among youth, vaping was associated with increased reporting of past-week respiratory symptoms. Among those who vaped, some flavour types and potentially nicotine salts were associated with respiratory symptoms.


Asunto(s)
Autoinforme , Vapeo , Humanos , Vapeo/epidemiología , Vapeo/efectos adversos , Adolescente , Masculino , Femenino , Canadá/epidemiología , Inglaterra/epidemiología , Adulto Joven , Estados Unidos/epidemiología , Sistemas Electrónicos de Liberación de Nicotina/estadística & datos numéricos , Prevalencia , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/etiología
14.
Eur Respir J ; 64(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991709

RESUMEN

BACKGROUND: Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS: 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION: Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.


Asunto(s)
COVID-19 , Sistemas Electrónicos de Liberación de Nicotina , SARS-CoV-2 , Vapeo , Humanos , Vapeo/efectos adversos , COVID-19/genética , Nicotina , Índice de Severidad de la Enfermedad , Susceptibilidad a Enfermedades , Fumar/efectos adversos
15.
Eur Respir J ; 63(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38609098

RESUMEN

Electronic cigarette (e-cigarette) use continues to rise globally. E-cigarettes have been presented as safer alternatives to combustion cigarettes that can mitigate the harm associated with tobacco products; however, the degree to which e-cigarette use itself can lead to morbidity and mortality is not fully defined. Herein we describe how e-cigarettes function; discuss the current knowledge of the effects of e-cigarette aerosol on lung cell cytotoxicity, inflammation, antipathogen immune response, mucociliary clearance, oxidative stress, DNA damage, carcinogenesis, matrix remodelling and airway hyperresponsiveness; and summarise the impact on lung diseases, including COPD, respiratory infection, lung cancer and asthma. We highlight how the inclusion of nicotine or flavouring compounds in e-liquids can impact lung toxicity. Finally, we consider the paradox of the safer cigarette: the toxicities of e-cigarettes that can mitigate their potential to serve as a harm reduction tool in the fight against traditional cigarettes, and we summarise the research needed in this underinvestigated area.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Pulmón , Humanos , Pulmón/efectos de los fármacos , Enfermedades Pulmonares/inducido químicamente , Nicotina/efectos adversos , Reducción del Daño , Estrés Oxidativo , Vapeo/efectos adversos , Daño del ADN , Productos de Tabaco/efectos adversos
16.
BMC Med ; 22(1): 99, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632570

RESUMEN

BACKGROUND: Tobacco smoking affects women's fertility and is associated with substantial risks of adverse pregnancy outcomes. This study explored trends by socioeconomic position in patterns of smoking, use of non-combustible nicotine products, and quitting activity among women of reproductive age in England. METHODS: Data come from a nationally representative monthly cross-sectional survey. Between October 2013 and October 2023, 197,266 adults (≥ 18 years) were surveyed, of whom 44,052 were women of reproductive age (18-45 years). Main outcome measures were current smoking, vaping, and use of nicotine replacement therapy (NRT), heated tobacco products (HTPs), and nicotine pouches; mainly/exclusively smoking hand-rolled cigarettes and level of dependence among current smokers; past-year quit attempts among past-year smokers; and success of quit attempts among those who tried to quit. We modelled time trends in these outcomes, overall and by occupational social grade (ABC1 = more advantaged/C2DE = less advantaged). RESULTS: Smoking prevalence among women of reproductive age fell from 28.7% [95%CI = 26.3-31.2%] to 22.4% [19.6-25.5%] in social grades C2DE but there was an uncertain increase from 11.7% [10.2-13.5%] to 14.9% [13.4-16.6%] in ABC1. By contrast, among all adults and among men of the same age, smoking prevalence remained relatively stable in ABC1. Vaping prevalence among women of reproductive age more than tripled, from 5.1% [4.3-6.0%] to 19.7% [18.0-21.5%], with the absolute increase more pronounced among those in social grades C2DE (reaching 26.7%; 23.3-30.3%); these changes were larger than those observed among all adults but similar to those among men of the same age. The proportion of smokers mainly/exclusively smoking hand-rolled cigarettes increased from 40.5% [36.3-44.9%] to 61.4% [56.5-66.1%] among women of reproductive age; smaller increases were observed among all adults and among men of the same age. Patterns on other outcomes were largely similar between groups. CONCLUSIONS: Among women of reproductive age, there appears to have been a rise in smoking prevalence in the more advantaged social grades over the past decade. Across social grades, there have been substantial increases in the proportion of women of reproductive age who vape and shifts from use of manufactured to hand-rolled cigarettes among those who smoke. These changes have been more pronounced than those observed in the general adult population over the same period.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Vapeo , Adulto , Embarazo , Masculino , Humanos , Femenino , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Nicotina , Estudios Transversales , Dispositivos para Dejar de Fumar Tabaco , Inglaterra/epidemiología
17.
Cancer Causes Control ; 35(3): 405-416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37812335

RESUMEN

PURPOSE: E-cigarettes are the most commonly used tobacco product among youth in the United States. Yet evidence-based prevention programming is limited due to the rapid onset of this threat. Community-based efforts to address vaping largely target youth in school settings. Although parents can play an important role in youth tobacco control efforts, messages about the dangers of vaping, use among adolescents, and strategies for intervening have not reached many Spanish-speaking parents in low-income Latinx communities. Our community-academic team developed e-cigarette prevention programming for use by promotor/as de salud to address this unmet need. METHODS: During the 1-year project, the team worked closely with a Project Advisory Committee to: review existing evidence-informed materials; conduct focus groups with parents, youth and promotor/as to guide program development; develop a curriculum to prepare promotor/as to educate low-literacy, Spanish-speaking parents about vaping; craft Spanish language resources for promotor/as to use in community education sessions; train 61 promotor/as to deliver the program; and support program delivery to 657 community members. RESULTS: Focus groups with promotor/as and community members, key-informant interviews, and brief surveys informed program development and assessment. Community member feedback was essential to development of appropriate materials. Promotor/as demonstrated significant pre- to post- training increases in e-cigarette knowledge and confidence in delivering vaping prevention education. Community members demonstrated a mastery of basic e-cigarette concepts and expressed intention to discuss vaping with their children. CONCLUSIONS: Promotor/a-led programming for parents represents a promising approach to vaping prevention and control in the Latinx community.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Niño , Humanos , Estados Unidos , Vapeo/prevención & control , Hispánicos o Latinos
18.
Microvasc Res ; 153: 104653, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38220030

RESUMEN

The use of e-cigarettes or vapes is increasingly popular amongst a range of different demographics however the research in this area is surprisingly sparse. Clinical reports of e-cigarette- or vaping use-associated lung injury (EVALI) and vascular disruption, in both nicotine-containing and nicotine-free e-cigarette smokers, prompts the need for further research with a focus on the pulmonary endothelium. Using a common brand of e-cigarette (eVape) and an in vitro model of the human lung microvasculature, we investigated the effect of nicotine-free eVape fluid on pulmonary endothelial barrier integrity, oxidative stress and inflammation profile. Findings demonstrate reactive oxygen species-dependent breakdown of the pulmonary endothelium and release of inflammatory cytokines. These phenotypic changes, following exposure to nicotine-free eVape fluid, were accompanied by dysregulation of a number of adheren junctions-related genes of which ARF6 was most abundantly overexpressed. Further investigation of ARF6 identified it as a key regulator in eVape-induced barrier disruption and ROS accumulation. This study demonstrates, for the first time, the barrier disruptive effect of nicotine-free e-cigarette fluid on the pulmonary microvasculature and the ARF6 and ROS-dependent molecular mechanisms underlying this damage. Whilst these studies focus on a human in vitro model of the pulmonary microvasculature, the results support clinical case studies on EVALI and demonstrate a need for further investigation of the impact of nicotine-free e-cigarettes on the lung.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Lesión Pulmonar , Vapeo , Humanos , Vapeo/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Pulmón/metabolismo , Nicotina/toxicidad , Endotelio/metabolismo
19.
Respir Res ; 25(1): 75, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317149

RESUMEN

BACKGROUND: Electronic cigarettes (EC) have gained popularity, especially among young people, with the introduction of fourth-generation devices based on e-liquids containing nicotine salts that promise a smoother vaping experience than freebase nicotine. However, the toxicological effects of nicotine salts are still largely unknown, and the chemical diversity of e-liquids limits the comparison between different studies to determine the contribution of each compound to the cytotoxicity of EC aerosols. Therefore, the aim of this study was to evaluate the toxicological profile of controlled composition e-liquid aerosols to accurately determine the effects of each ingredient based on exposure at the air-liquid interface. METHODS: Human lung epithelial cells (A549) were exposed to undiluted aerosols of controlled composition e-liquids containing various ratios of propylene glycol (PG)/vegetable glycerin (VG) solvents, freebase nicotine, organic acids, nicotine salts, and flavoured commercial e-liquids. Exposure of 20 puffs was performed at the air-liquid interface following a standard vaping regimen. Toxicological outcomes, including cytotoxicity, inflammation, and oxidative stress, were assessed 24 h after exposure. RESULTS: PG/VG aerosols elicited a strong cytotoxic response characterised by a 50% decrease in cell viability and a 200% increase in lactate dehydrogenase (LDH) production, but had no effects on inflammation and oxidative stress. These effects occurred only at a ratio of 70/30 PG/VG, suggesting that PG is the major contributor to aerosol cytotoxicity. Both freebase nicotine and organic acids had no greater effect on cell viability and LDH release than at a 70/30 PG/VG ratio, but significantly increased inflammation and oxidative stress. Interestingly, the protonated form of nicotine in salt showed a stronger proinflammatory effect than the freebase nicotine form, while benzoic acid-based nicotine salts also induced significant oxidative stress. Flavoured commercial e-liquids was found to be cytotoxic at a threshold dose of ≈ 330 µg/cm². CONCLUSION: Our results showed that aerosols of e-liquids consisting only of PG/VG solvents can cause severe cytotoxicity depending on the concentration of PG, while nicotine salts elicit a stronger pro-inflammatory response than freebase nicotine. Overall, aerosols from fourth-generation devices can cause different toxicological effects, the nature of which depends on the chemical composition of the e-liquid.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Adolescente , Nicotina/toxicidad , Vapeo/efectos adversos , Sales (Química) , Solventes , Propilenglicol/toxicidad , Propilenglicol/química , Glicerol/química , Glicerol/farmacología , Aerosoles , Aromatizantes , Inflamación
20.
Chem Res Toxicol ; 37(6): 1000-1010, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38769630

RESUMEN

Electronic cigarette smoking (or vaping) is on the rise, presenting questions about the effects of secondhand exposure. The chemical composition of vape emissions was examined in the exhaled breath of eight human volunteers with the high chemical specificity of complementary online and offline techniques. Our study is the first to take multiple exhaled puff measurements from human participants and compare volatile organic compound (VOC) concentrations between two commonly used methods, proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and gas chromatography (GC). Five flavor profile groups were selected for this study, but flavor compounds were not observed as the main contributors to the PTR-ToF-MS signal. Instead, the PTR-ToF-MS mass spectra were overwhelmed by e-liquid thermal decomposition and fragmentation products, which masked other observations regarding flavorings and other potentially toxic species associated with secondhand vape exposure. Compared to the PTR-ToF-MS, GC measurements reported significantly different VOC concentrations, usually below those from PTR-ToF-MS. Consequently, PTR-ToF-MS mass spectra should be interpreted with caution when reporting quantitative results in vaping studies, such as doses of inhaled VOCs. Nevertheless, the online PTR-ToF-MS analysis can provide valuable qualitative information by comparing relative VOCs in back-to-back trials. For example, by comparing the mass spectra of exhaled air with those of direct puffs, we can conclude that harmful VOCs present in the vape emissions are largely absorbed by the participants, including large fractions of nicotine.


Asunto(s)
Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Masculino , Adulto , Pruebas Respiratorias , Femenino , Espectrometría de Masas , Vapeo/efectos adversos , Espiración , Sistemas Electrónicos de Liberación de Nicotina , Adulto Joven , Cromatografía de Gases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA