Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Fish Shellfish Immunol ; 151: 109707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885802

RESUMEN

Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.


Asunto(s)
Bagres , Enfermedades de los Peces , Vibriosis , Vibrio mimicus , Animales , Bagres/inmunología , Bagres/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vibriosis/veterinaria , Vibriosis/inmunología , Vibrio mimicus/inmunología , Susceptibilidad a Enfermedades/veterinaria , Susceptibilidad a Enfermedades/inmunología , Epidermis/inmunología , Epidermis/microbiología , Nutrientes
2.
Fish Shellfish Immunol ; 108: 80-85, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33285164

RESUMEN

The outer membrane protein U (OmpU) is a conserved outer membrane protein in a variety of pathogenic Vibrio species and has been considered as a vital protective antigen for vaccine development. Vibrio mimicus (V. mimicus) is the pathogen causing ascites disease in aquatic animals. In this study, the prokaryotically expressed and purified His-tagged OmpU of V. mimicus (His-OmpU) was used as a subunit vaccine. The formalin inactivated V. mimicus, purified His tag (His-tag), and PBS were used as controls. The vaccinated yellow catfish were challenged with V. mimicus at 28 days post-vaccination, and the results showed that the His-OmpU and inactivated V. mimicus groups exhibited much higher survival rates than the His-tag and PBS groups. To fully understand the underlying mechanism, we detected the expression levels of several immune-related genes in the spleen of fish at 28 days post-vaccination and 24 h post-challenge. The results showed that most of the detected immune-related genes were significantly upregulated in His-OmpU and inactivated V. mimicus groups. In addition, we performed the serum bactericidal activity assay, and the results showed that the serum from His-OmpU and inactivated V. mimicus groups exhibited much stronger bactericidal activity against V. mimicus than those of His-tag and PBS groups. Finally, the serum agglutination antibody was detected, and the antibody could be detected in His-OmpU and inactivated V. mimicus groups with the antibody titers increasing along with the time post-vaccination, but not in His-tag or PBS group. Our data reveal that the recombinant OmpU elicits potent protective immune response and is an effective vaccine candidate against V. mimicus in yellow catfish.


Asunto(s)
Adhesinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Enfermedades de los Peces/inmunología , Inmunogenicidad Vacunal , Vibriosis/veterinaria , Vibrio mimicus/inmunología , Animales , Bagres , Vacunas de Subunidad/inmunología , Vibriosis/inmunología
3.
Fish Shellfish Immunol ; 98: 641-652, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31678536

RESUMEN

Intestinal mucosal immunity plays a vital role against Vibrio mimicus infection because it is an enteric pathogen causing serious vibriosis in fish. In the previous studies, we developed an oral double-targeted DNA vaccine of V. mimicus and demonstrated that the vaccine could elicit significantly higher intestinal mucosal immune response than did naked DNA vaccine. But, little is known underlying regulatory molecular mechanisms of the enhanced intestinal mucosal immunity. Here the transcriptome and proteome in the intestines of the grass carps immunized or not with the double-targeted DNA vaccine were investigated by using RNA-seq and iTRAQ-coupled LC-MS/MS. Compared with the control group, a total of 5339 differentially expressed genes (DEGs) and 1173 differentially expressed proteins (DEPs) were identified in the immunized fish intestines. Subsequently, the integrated analysis between transcriptome and proteome data revealed that 250 DEPs were matched with the corresponding DEGs (named associated DEPs/DEGs) at both transcriptome and proteome levels. Fifty of all the associated DEPs/DEGs were immune-related and mainly enriched in phagosome, antigen-processing and presentation, complement and coagulation cascades, NLRs and MAPK signaling pathways via Gene Ontology and KEGG pathway analyses, which suggested the coordination of the five activated pathways was essential to the enhanced intestinal mucosal immune response in the immunized fish. The protein-protein interaction analysis showed that 60 of the 63 immune-related DEPs to form an integrated network. Additionally, randomly selected DEGs and DEPs were respectively validated by quantitative real-time RT-PCR and multiple reaction monitoring (MRM) assay, indicating that the both RNA-Seq and iTRAQ results in the study were reliable. Overall, our comprehensive transcriptome and proteome data provide some key genes and their protein products for further research on the regulatory molecular mechanisms underlying the enhanced intestinal mucosal immunity.


Asunto(s)
Vacunas Bacterianas/administración & dosificación , Carpas , Intestinos/fisiología , Vacunación/veterinaria , Vacunas de ADN/administración & dosificación , Vibriosis/veterinaria , Vibrio mimicus/inmunología , Animales , Carpas/genética , Carpas/metabolismo , Perfilación de la Expresión Génica/veterinaria , Proteoma , Transcriptoma , Vibriosis/prevención & control
4.
Fish Shellfish Immunol ; 92: 377-383, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31202969

RESUMEN

Vibrio mimicus (V. mimicus) is a significant pathogen in freshwater catfish, though knowledge of virulence determinants and effective vaccine is lacking. Multiplex genome editing by natural transformation (MuGENT) is an easy knockout method, which has successfully used in various bacteria except for V. mimicus. Here, we found V. mimicus strain SCCF01 can uptake exogenous DNA and insert it into genome by natural transformation assay. Subsequently, we exploited this property to make five mutants (△Hem, △TS1, △TS2, △TS1△TS2, and △II), and removed the antibiotic resistance marker by Flp-recombination. Finally, all of the mutants were identified by PCR and RT-PCR. The results showed that combination of natural transformation and FLP-recombination can be applied successfully to generate targeted gene disruptions without the antibiotic resistance marker in V. mimicus. In addition, the five mutants showed mutant could be inherited after several subcultures and a 668-fold decrease in the virulence to yellow catfish (Pelteobagrus fulvidraco). This study provides a convenient method for the genetic manipulation of V. mimicus. It will facilitate the identification and characterization of V. mimicus virulence factors and eventually contribute to a better understanding of V. mimicus pathogenicity and development of attenuated vaccine.


Asunto(s)
Vacunas Bacterianas/inmunología , Bagres , Enfermedades de los Peces/inmunología , Edición Génica/veterinaria , Técnicas de Inactivación de Genes/veterinaria , Vibrio mimicus/inmunología , Animales , Técnicas de Inactivación de Genes/métodos , Vacunas Atenuadas/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria
5.
Fish Shellfish Immunol ; 34(1): 291-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23178262

RESUMEN

Vibrio mimicus (V. mimicus) is the causative agent of ascites disease in aquatic animals. Outer membrane protein U (OmpU) is an important antigen of V. mimicus, but its protective epitopes are still unclear. A random 12-mer phage-displayed peptide library was used to screen and identify immunodominant mimotopes of the OmpU protein in V. mimicus by panning against purified OmpU-specific polyclonal antibody. Then the immunogenicity and immunoprotection in fish of these mimotopes was evaluated. Nine positive phage clones presented seven different 12- peptide sequences and more than 50% of them carried a consensus core motif of DSSK-P. These positive clones reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by OmpU protein. Intraperitoneal injection of seven positive phage clones into fish induced a specific antibody response to OmpU protein. The fish immunized respectively with the positive phage clones C17, C24, C60 and C66 obtained 100% immunoprotective effect against experimental V. mimicus challenge. Taken together, these mimotopes presented by clone C17, C24, C60 and C66 were immunodominant mimotopes of the OmpU protein and exhibited a more appropriate candidate as epitope-based vaccine against V. mimicus infection in aquatic animals.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Carpas , Enfermedades de los Peces/prevención & control , Epítopos Inmunodominantes/inmunología , Vibriosis/veterinaria , Vibrio mimicus/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/inmunología , Bacteriófagos , Clonación Molecular , ADN Bacteriano/química , Relación Dosis-Respuesta Inmunológica , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Biblioteca de Péptidos , Péptidos/inmunología , Conejos , Análisis de Secuencia de ADN/veterinaria , Análisis de Secuencia de Proteína/veterinaria , Vacunas de ADN/inmunología , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/prevención & control
6.
Vet Immunol Immunopathol ; 182: 22-28, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27863546

RESUMEN

Vibrio mimicus is the causative agent of ascites disease in fish. The heat-labile hemolytic toxin designated VMH is an immunoprotective antigen of V. mimicus. However, its epitopes have not been well characterized. Here, a commercially available phage displayed 12-mer peptide library was used to screen epitopes of VMH protein using polyclonal rabbit anti-rVMH protein antibodies, and then five positive phage clones were identified by sandwich and competitive ELISA. Sequences analysis showed that the motif of DPTLL displayed on phage clone 15 and the consensus motif of SLDDDST displayed on the clone 4/11 corresponded to the residues 134-138 and 238-244 of VMH protein, respectively, and the synthetic motif peptides could also be recognized by anti-rVMH-HD antibody in peptide-ELISA. Thus, both motifs DPTLL and SLDDDST were identified as minimal linear B-cell epitopes of VMH protein. Although no similarity was found between VMH protein and the consensus motif of ADGLVPR displayed on the clone 2/6, the synthetic peptide ADGLVPR could absorb anti-rVMH-HD antibody and inhibit the antibody binding to rVMH protein in enhanced chemoluminescence Western blotting, whereas irrelevant control peptide did not affect the antibody binding with rVMH. These results revealed that the peptide ADGLVPR was a mimotope of VMH protein. Taken together, three novel B-cell epitopes of VMH protein were identified, which provide a foundation for developing epitope-based vaccine against V. mimicus infection in fish.


Asunto(s)
Proteínas Bacterianas/inmunología , Epítopos de Linfocito B/inmunología , Proteínas Hemolisinas/inmunología , Vibrio mimicus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos , Proteínas Bacterianas/genética , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Ensayo de Inmunoadsorción Enzimática , Epítopos de Linfocito B/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Peces , Proteínas Hemolisinas/genética , Biblioteca de Péptidos , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/veterinaria , Vibrio mimicus/genética , Vibrio mimicus/patogenicidad
7.
Biocontrol Sci ; 19(4): 199-203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25744216

RESUMEN

Of human pathogenic Vibrio species, V. mimicus causes gastroenteritis whereas V. vulnificus causes fatal septicemia after consumption of contaminated seafood. These two pathogens produce hemolytic toxins termed V. mimicus hemolysin (VMH) and V. vulnificus hemolysin (VVH), respectively. These toxins elicit the cytolysis of various eukaryotic cells, as well as erythrocytes. The human intestine secretes cationic antimicrobial peptides (AMPs) to prevent infectious diseases. Paneth cells in the small intestine secrete α-defensin 5 (HD-5) and epithelial cells in the large intestine produce LL-37. In the present study, we examined the bactericidal activities of AMPs against V. mimicus and V. vulnificus. Although HD-5 showed no bactericidal activity, LL-37 revealed significant activity against both Vibrio species, suggesting that neither V. mimicus nor V. vulnificus can multiply in the large intestine. We also tested whether AMPs had the ability to inactivate the hemolytic toxins. Only HD-5 was found to inactivate VMH, but not VVH, in a dose-dependent manner through the direct binding to VMH. Therefore, it is considered that V. mimicus cannot penetrate the small intestinal epithelium because the cytolytic action of VMH is inactivated by HD-5.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Hemolisinas/antagonistas & inhibidores , Viabilidad Microbiana/efectos de los fármacos , Vibrio mimicus/efectos de los fármacos , Vibrio vulnificus/efectos de los fármacos , Gastroenteritis/inmunología , Gastroenteritis/microbiología , Gastroenteritis/prevención & control , Humanos , Sepsis/inmunología , Sepsis/microbiología , Sepsis/prevención & control , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/prevención & control , Vibrio mimicus/inmunología , Vibrio vulnificus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA