Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
Más filtros

Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(6): e0006524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38775491

RESUMEN

CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) is a gene knockdown method that uses a deactivated Cas9 protein (dCas9) that binds a specific gene target locus dictated by an encoded guide RNA (sgRNA) to block transcription. Mobile-CRISPRi is a suite of modular vectors that enable CRISPRi knockdowns in diverse bacteria by integrating IPTG-inducible dcas9 and sgRNA genes into the genome using Tn7 transposition. Here, we show that the Mobile-CRISPRi system functions robustly and specifically in multiple Vibrio species: Vibrio cholerae, Vibrio fischeri, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio campbellii. We demonstrate efficacy by targeting both essential and non-essential genes that function to produce defined, measurable phenotypes: bioluminescence, quorum sensing, cell division, and growth arrest. We anticipate that Mobile-CRISPRi will be used in Vibrio species to systematically probe gene function and essentiality in various behaviors and native environments.IMPORTANCEThe genetic manipulation of bacterial genomes is an invaluable tool in experimental microbiology. The development of CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) tools has revolutionized genetics in many organisms, including bacteria. Here, we optimized the use of Mobile-CRISPRi in five Vibrio species, each of which has significant impacts on marine environments and organisms that include squid, shrimp, shellfish, finfish, corals, and multiple of which pose direct threats to human health. The Mobile-CRISPRi technology is easily adaptable, moveable from strain to strain, and enables researchers to selectively turn off gene expression. Our experiments demonstrate Mobile-CRISPRi is effective and robust at repressing gene expression of both essential and non-essential genes in Vibrio species.


Asunto(s)
Vibrio vulnificus , Vibrio , Vibrio/genética , Vibrio vulnificus/genética , Vibrio parahaemolyticus/genética , Regulación Bacteriana de la Expresión Génica , Sistemas CRISPR-Cas , Vibrio cholerae/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Silenciamiento del Gen , Aliivibrio fischeri/genética
2.
BMC Microbiol ; 24(1): 37, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279108

RESUMEN

BACKGROUND: Vibrio vulnificus exists as one of the most serious foodborne pathogens for humans, and rapid and sensitive detection methods are needed to control its infections. As an emerging method, The Loop-Mediated Isothermal Amplification (LAMP) assay has been applied to the early detection of various foodborne pathogens due to its high efficiency, but sample preprocessing still prolongs the complete detection. To optimize the detection process, our study established a novel sample preprocessing method that was more efficient compared to common methods. RESULT: Using V. vulnificus as the detecting pathogen, the water-lysis-based detecting LAMP method shortened the preprocessing time to ≤ 1 min with 100% LAMP specificity; the detection limits of the LAMP assay were decreased to 1.20 × 102 CFU/mL and 1.47 × 103 CFU/g in pure culture and in oyster, respectively. Furthermore, the 100% LAMP specificity and high sensitivity of the water-lysis method were also obtained on detecting V. parahaemolyticus, V. alginolyticus, and P. mirabilis, revealing its excellent LAMP adaption with improvement in sensitivity and efficiency. CONCLUSION: Our study provided a novel LAMP preprocessing method that was more efficient compared to common methods and possessed the practical potential for LAMP application in the future.


Asunto(s)
Técnicas de Diagnóstico Molecular , Vibrio vulnificus , Humanos , Vibrio vulnificus/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Agua , Manejo de Especímenes , Sensibilidad y Especificidad
3.
Microb Pathog ; 186: 106498, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097116

RESUMEN

Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.


Asunto(s)
Anguilla , Enfermedades de los Peces , Vibriosis , Vibrio vulnificus , Animales , Vibrio vulnificus/genética , Anguilla/genética , Anguilla/microbiología , Virulencia/genética , RNA-Seq , Enfermedades de los Peces/microbiología
4.
Environ Sci Technol ; 58(19): 8169-8181, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690750

RESUMEN

Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.


Asunto(s)
Vibrio vulnificus , Vibrio vulnificus/genética , Incendios Forestales , Expresión Génica
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593634

RESUMEN

Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.


Asunto(s)
Vibriosis/microbiología , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidad , Animales , Biodiversidad , Ecosistema , Enfermedades Endémicas , Florida , Marcadores Genéticos/genética , Humanos , Ostreidae/microbiología , Fenotipo , Filogenia , Virulencia/genética
6.
Foodborne Pathog Dis ; 21(7): 458-466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38551156

RESUMEN

Vibrio vulnificus is a hazardous foodborne pathogen responsible for approximately 95% of seafood-related deaths. This highlights the urgent requirement for specialized detection tools to be developed and used by food enterprises and food safety authorities. The DETECTR (DNA endonuclease targeted CRISPR trans reporter) system that combines CRISPR/Cas and recombinase polymerase amplification (RPA) has been utilized to develop a molecular detection assay for V. vulnificus. However, because the incompatibility between RPA and Cas12a cleavage has not been addressed, it is a two-step assay that lacks convenience and presents contamination risk. Here, we developed a one-step RPA-CRISPR assay for V. vulnificus using a special crRNA targeting a sequence with a suboptimal protospacer adjacent motif (PAM). The entire assay, conducted at 37°C, takes only 40-60 min, yields results visualized under blue light, and exhibits exceptional specificity and sensitivity (detecting 4 pathogen genome copies per reaction). This study offers a valuable tool for detecting V. vulnificus, aiding in foodborne infection prevention, and exemplifies one-step RPA-CRISPR assays managing Cas-cleavage activity through PAM adjustments.


Asunto(s)
Sistemas CRISPR-Cas , Vibrio vulnificus , Vibrio vulnificus/aislamiento & purificación , Vibrio vulnificus/genética , Microbiología de Alimentos , Alimentos Marinos/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Recombinasas/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sensibilidad y Especificidad
7.
Appl Environ Microbiol ; 89(6): e0030723, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222620

RESUMEN

Incidence of vibriosis is rising globally, with evidence that changing climatic conditions are influencing environmental factors that enhance growth of pathogenic Vibrio spp. in aquatic ecosystems. To determine the impact of environmental factors on occurrence of pathogenic Vibrio spp., samples were collected in the Chesapeake Bay, Maryland, during 2009 to 2012 and 2019 to 2022. Genetic markers for Vibrio vulnificus (vvhA) and Vibrio parahaemolyticus (tlh, tdh, and trh) were enumerated by direct plating and DNA colony hybridization. Results confirmed seasonality and environmental parameters as predictors. Water temperature showed a linear correlation with vvhA and tlh, and two critical thresholds were observed, an initial increase in detectable numbers (>15°C) and a second increase when maximum counts were recorded (>25°C). Temperature and pathogenic V. parahaemolyticus (tdh and trh) were not strongly correlated; however, the evidence showed that these organisms persist in oyster and sediment at colder temperatures. Salinity (10 to 15 ppt), total chlorophyll a (5 to 25 µg/L), dissolved oxygen (5 to 10 mg/L), and pH (8) were associated with increased abundance of vvhA and tlh. Importantly, a long-term increase in Vibrio spp. numbers was observed in water samples between the two collection periods, specifically at Tangier Sound (lower bay), with the evidence suggesting an extended seasonality for these bacteria in the area. Notably, tlh showed a mean positive increase that was ca. 3-fold overall, with the most significant increase observed during the fall. In conclusion, vibriosis continues to be a risk in the Chesapeake Bay region. A predictive intelligence system to assist decision makers, with respect to climate and human health, is warranted. IMPORTANCE The genus Vibrio includes pathogenic species that are naturally occurring in marine and estuarine environments globally. Routine monitoring for Vibrio species and environmental parameters influencing their incidence is critical to provide a warning system for the public when the risk of infection is high. In this study, occurrence of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Chesapeake Bay water, oysters, and sediment samples collected over a 13-year period was analyzed. The results provide a confirmation of environmental predictors for these bacteria, notably temperature, salinity, and total chlorophyll a, and their seasonality of occurrence. New findings refine environmental parameter thresholds of culturable Vibrio species and document a long-term increase in Vibrio populations in the Chesapeake Bay. This study provides a valuable foundation for development of predicative risk intelligence models for Vibrio incidence during climate change.


Asunto(s)
Ostreidae , Vibriosis , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Humanos , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Clorofila A , Ecosistema , Ostreidae/microbiología , Vibriosis/epidemiología , Agua
8.
Arch Microbiol ; 205(6): 241, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198473

RESUMEN

In recent years, trade liberalisation has led to the spread of antibiotic-resistant bacteria (ARB) in food products. Because ARB has reportedly been found in imported foods, the spread of plasmid-mediated ARB through food products is a concern. Here, we report the complete genome sequences of ESBL-producing Vibrio vulnificus and V. alginolyticus strains harbouring a plasmid isolated from imported seafood. First, V. vulnificus and V. alginolyticus were isolated from purchased frozen and thawed Litopenaeus vannamei shrimp, and genome extraction and sequencing were performed. Hybrid genome assemblies were performed using Unicycler and annotated using DFAST. Then genome analysis was performed using BRIG. Plasmid comparisons showed that the plasmids carried by both Vibrios are remarkably similar and encode the same antibiotic-resistance genes. The 270-310 kb region specific to both Vibrios were isolated in this study and encodes the antibiotic-resistance genes blaCTX-M and qnr. Furthermore, the mobile genetic factors ISEc9, ISVch4, and ISVpa4 are located upstream and downstream of these genes. This is the first report of ESBL-producing V. vulnificus and V. alginolyticus harbouring a common plasmid encoding ISEc9 upstream of blaCTX-M-55 and qnrS2 isolated from imported seafood.


Asunto(s)
Vibrio vulnificus , Vibrio , Vibrio vulnificus/genética , Antibacterianos/farmacología , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Plásmidos/genética , Vibrio/genética , Alimentos Marinos/microbiología , beta-Lactamasas/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-36749680

RESUMEN

A Gram-stain-negative, rod-shaped bacterial strain, designated Vibrio floridensis IRLE0018 (=NRRL B-65642=NCTC 14661), was isolated from a cyanobacterial bloom along the Indian River Lagoon (IRL), a large and highly biodiverse estuary in eastern Florida (USA). The results of phylogenetic, biochemical, and phenotypic analyses indicate that this isolate is distinct from species of the genus Vibrio with validly published names and is the closest relative to the emergent human pathogen, Vibrio vulnificus. Here, we present the complete genome sequence of V. floridensis strain IRLE0018 (4 535 135 bp). On the basis of the established average nucleotide identity (ANI) values for the determination of different species (ANI <95 %), strain IRLE0018, with an ANI of approximately 92 % compared with its closest relative, V. vulnificus, represents a novel species within the genus Vibrio. To our knowledge, this represents the first time this species has been described. The results of genomic analyses of V. floridensis IRLE0018 indicate the presence of antibiotic resistance genes and several known virulence factors, however, its pathogenicity profile (e.g. survival in serum, phagocytosis avoidance) reveals limited virulence potential of this species in contrast to V. vulnificus.


Asunto(s)
Cianobacterias , Vibrio vulnificus , Vibrio , Humanos , Vibrio vulnificus/genética , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Cianobacterias/genética
10.
Analyst ; 148(15): 3509-3517, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37409577

RESUMEN

Foodborne pathogens cause numerous food safety problems, and as a virulent bacterium falling under this category, Vibrio vulnificus (V. vulnificus) poses a huge threat to public health. The conventional methods used for the detection of V. vulnificus, including culture-based and molecular detection methods, have a variety of drawbacks, including being time-consuming and labor-intensive, the requirement of large-scale equipment, and the lack of professional operators. This paper establishes a visible detection platform for V. vulnificus based on CRISPR/Cas12a, which is integrated with nucleic acid isothermal amplification and ß-galactosidase-catalyzed visible color reaction. The specific vvhA gene and a conservative segment in the 16S rDNA gene of the Vibrio genus were selected as the detection targets. By using spectrum analysis, this CRISPR detection platform achieved sensitive detection of V. vulnificus (1 CFU per reaction) with high specificity. Through the color transformation system, as low as 1 CFU per reaction of V. vulnificus in both bacterial solution and artificially contaminated seafood could be visibly observed with the naked eye. Furthermore, the consistency between our assay and the qPCR assay in the detection of V. vulnificus spiked seafood was confirmed. In general, this visible detection platform is user-friendly, accurate, portable, and equipment-free, and is expected to provide a powerful supplement in point-of-care testing of V. vulnificus and also holds good promise for future application in foodborne pathogen detection.


Asunto(s)
Vibrio vulnificus , Vibrio vulnificus/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
11.
Nature ; 541(7636): 242-246, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-27841871

RESUMEN

Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of 'mix-and-inject' time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.


Asunto(s)
Cristalografía por Rayos X/métodos , Nanotecnología/métodos , Conformación de Ácido Nucleico , ARN Bacteriano/química , Riboswitch , Regiones no Traducidas 5'/genética , Aptámeros de Nucleótidos/química , Cristalización , Difusión , Electrones , Cinética , Rayos Láser , Ligandos , Modelos Moleculares , Pliegue del ARN , ARN Bacteriano/genética , Factores de Tiempo , Vibrio vulnificus/genética
12.
Nucleic Acids Res ; 49(10): 5891-5904, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33963862

RESUMEN

Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.


Asunto(s)
Adenina/química , Aptámeros de Nucleótidos/química , Vibrio vulnificus/química , Sitios de Unión , Ligandos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Pliegue del ARN , Riboswitch , Imagen Individual de Molécula , Programas Informáticos , Espectroscopía Infrarroja por Transformada de Fourier , Vibrio vulnificus/genética
13.
Nucleic Acids Res ; 49(10): 5967-5984, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34023896

RESUMEN

Quorum sensing gene expression in vibrios is regulated by the LuxR/HapR family of transcriptional factors, which includes Vibrio vulnificus SmcR. The consensus binding site of Vibrio LuxR/HapR/SmcR proteins is palindromic but highly degenerate with sequence variations at each promoter. To examine the mechanism by which SmcR recognizes diverse DNA sites, we generated SmcR separation-of-function mutants that either repress or activate transcription but not both. SmcR N55I is restricted in recognition of single base-pair variations in DNA binding site sequences and thus is defective at transcription activation but retains interaction with RNA polymerase (RNAP) alpha. SmcR S76A, L139R and N142D substitutions disrupt the interaction with RNAP alpha but retain functional DNA binding activity. X-ray crystallography and small angle X-ray scattering data show that the SmcR DNA binding domain exists in two conformations (wide and narrow), and the protein complex forms a mixture of dimers and tetramers in solution. The three RNAP interaction-deficient variants also have two DNA binding domain conformations, whereas SmcR N55I exhibits only the wide conformation. These data support a model in which two mechanisms drive SmcR transcriptional activation: interaction with RNAP and a multi-conformational DNA binding domain that permits recognition of variable DNA sites.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/química , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/química , Vibrio vulnificus/química , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Dimerización , Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Modelos Moleculares , Mutación , Regiones Promotoras Genéticas , Conformación Proteica , Percepción de Quorum/genética , Proteínas Recombinantes , Proteínas Represoras/química , Proteínas Represoras/genética , Dispersión del Ángulo Pequeño , Factores de Transcripción/genética , Vibrio vulnificus/genética
14.
Adv Exp Med Biol ; 1404: 175-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36792876

RESUMEN

V. vulnificus, continues being an underestimated yet lethal zoonotic pathogen. In this chapter, we provide a comprehensive review of numerous aspects of the biology, epidemiology, and virulence mechanisms of this poorly understood pathogen. We will emphasize the widespread role of horizontal gene transfer in V. vulnificus specifically virulence plasmids and draw parallels from aquaculture farms to human health. By placing current findings in the context of climate change, we will also contend that fish farms act as evolutionary drivers that accelerate species evolution and the emergence of new virulent groups. Overall, we suggest that on-farm control measures should be adopted both to protect animals from Vibriosis, and also as a public health measure to prevent the emergence of new zoonotic groups.


Asunto(s)
Vibriosis , Vibrio vulnificus , Humanos , Animales , Vibrio vulnificus/genética , Vibriosis/veterinaria , Vibriosis/epidemiología , Acuicultura , Transferencia de Gen Horizontal , Virulencia/genética
15.
Adv Exp Med Biol ; 1404: 337-352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36792883

RESUMEN

When the first microbial genome sequences were published just 20 years ago, our understanding regarding the microbial world changed dramatically. The genomes of the first pathogenic vibrios sequenced, including Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus revealed a functional and phylogenetic diversity previously unimagined as well as a genome structure indelibly shaped by horizontal gene transfer. The initial glimpses into these organisms also revealed a genomic plasticity that allowed these bacteria to thrive in challenging and varied aquatic and marine environments, but critically also a suite of pathogenicity attributes. In this review we outline how our understanding of vibrios has changed over the last two decades with the advent of genomics and advances in bioinformatic and data analysis techniques, it has become possible to provide a more cohesive understanding regarding these bacteria: how these pathogens have evolved and emerged from environmental sources, their evolutionary routes through time and space, how they interact with other bacteria and the human host, as well as initiate disease. We outline novel approaches to the use of whole genome sequencing for this important group of bacteria and how new sequencing technologies may be applied to study these organisms in future studies.


Asunto(s)
Vibrio cholerae , Vibrio parahaemolyticus , Vibrio vulnificus , Humanos , Filogenia , Vibrio cholerae/genética , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Secuenciación Completa del Genoma
16.
J Biol Chem ; 296: 100280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450227

RESUMEN

Protein tyrosine phosphorylation regulates the production of capsular polysaccharide, an essential virulence factor of the deadly pathogen Vibrio vulnificus. The process requires the protein tyrosine kinase Wzc and its cognate phosphatase Wzb, both of which are largely uncharacterized. Herein, we report the structures of Wzb of V. vulnificus (VvWzb) in free and ligand-bound forms. VvWzb belongs to the low-molecular-weight protein tyrosine phosphatase (LMWPTP) family. Interestingly, it contains an extra four-residue insertion in the W-loop, distinct from all known LMWPTPs. The W-loop of VvWzb protrudes from the protein body in the free structure, but undergoes significant conformational changes to fold toward the active site upon ligand binding. Deleting the four-residue insertion from the W-loop severely impaired the enzymatic activity of VvWzb, indicating its importance for optimal catalysis. However, mutating individual residues or even substituting the whole insertion with four alanine residues only modestly decreased the enzymatic activity, suggesting that the contribution of the insertion to catalysis is not determined by the sequence specificity. Furthermore, inserting the four residues into Escherichia coli Wzb at the corresponding position enhanced its activity as well, indicating that the four-residue insertion in the W-loop can act as a general activity enhancing element for other LMWPTPs. The novel W-loop type and phylogenetic analysis suggested that VvWzb and its homologs should be classified into a new group of LMWPTPs. Our study sheds new insight into the catalytic mechanism and structural diversity of the LMWPTP family and promotes the understanding of the protein tyrosine phosphorylation system in prokaryotes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Fosfoproteínas Fosfatasas/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Quinasas/genética , Vibrio vulnificus/genética , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/química , Dominio Catalítico/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Humanos , Ligandos , Proteínas de la Membrana/química , Modelos Moleculares , Polímeros Impresos Molecularmente/química , Fosfoproteínas Fosfatasas/química , Filogenia , Proteínas Tirosina Fosfatasas/clasificación , Proteínas Tirosina Quinasas/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Vibrio vulnificus/química , Vibrio vulnificus/enzimología
17.
Infect Immun ; 90(4): e0062721, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35254094

RESUMEN

Vibrio vulnificus is an opportunistic pathogen that causes gastroenteritis and septicemia in humans. The V. vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin is a pore-forming toxin that translocates multiple functionally independent effector domains into target cells and an essential virulence factor for fatal disease. The effector repertoire delivered and thus the mechanism of action of the toxin can differ dramatically across V. vulnificus isolates. Here, we utilize a strain of V. vulnificus that carries an F-type MARTX toxin that delivers an actin cross-linking domain (ACD) and four other effector domains. We demonstrate that ACD is the primary driver of virulence following intragastric infection and of bacterial dissemination to distal organs. We additionally show that ACD activates the transcription of intermediate early response genes in cultured intestinal epithelial cells (IECs). However, the genes activated by ACD are suppressed, at least in part, by the codelivered Ras/Rap1-specific endopeptidase (RRSP). The transcriptional response induced by strains translocating only RRSP results in a unique transcriptional profile, demonstrating that the transcriptional response to V. vulnificus is remodeled rather than simply suppressed by the MARTX toxin effector repertoire. Regardless, the transcriptional response in the intestinal tissue of infected mice is dominated by ACD-mediated induction of genes associated with response to tissue damage and is not impacted by RRSP or the three other effectors codelivered with ACD and RRSP. These data demonstrate that while other effectors do remodel early intestinal innate immune responses, ACD is the dominant driver of disease progression by ACD+ V. vulnificus during intestinal infection.


Asunto(s)
Toxinas Bacterianas , Vibriosis , Vibrio vulnificus , Actinas , Animales , Toxinas Bacterianas/genética , Progresión de la Enfermedad , Ratones , Vibriosis/microbiología , Vibrio vulnificus/genética , Factores de Virulencia/genética
18.
Appl Environ Microbiol ; 88(6): e0188421, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196141

RESUMEN

To better understand the controls on the opportunistic human pathogen Vibrio vulnificus in warm tropical waters, we conducted a year-long investigation in the Ala Wai Canal, a channelized estuary in Honolulu, HI. The abundance of V. vulnificus, as determined by quantitative PCR (qPCR) of the hemolysin gene (vvhA), varied spatially and temporally by nearly 4 orders of magnitude (≤3 to 14,000 mL-1). Unlike in temperate and subtropical systems, temperatures were persistently warm (19 to 31°C) and explained little of the variability in V. vulnificus abundance. Salinity (1 to 36 ppt) had a significant, but nonlinear, relationship with V. vulnificus abundance with the highest vvhA concentrations (>2,500 mL-1) observed only at salinities from 7 to 22 ppt. V. vulnificus abundances were lower on average during the summer dry season, when waters were warmer but more saline. The highest canal-wide average abundances were observed during a time of modest rainfall, when moderate salinities and elevated concentrations of reduced nitrogen species and silica suggested a groundwater influence. Parallel quantification of the vcgC gene suggested that C-type strains, which are responsible for most human infections, comprised 25% of the total V. vulnificus on average, but their relative contribution was greater at higher salinities, suggesting a broader salinity tolerance. Generalized regression models suggested that up to 67% of sample-to-sample variation (n = 202) in log-transformed V. vulnificus abundance was explained using the measured environmental variables, and up to 97% of the monthly variation in canal-wide average concentrations (n = 13) was explained with the best subset of four variables. IMPORTANCE Our data illustrate that, in the absence of strong seasonal variation in water temperature in the tropics, variation in salinity driven by rainfall becomes a primary controlling variable on V. vulnificus abundance. There is thus a tendency for a rainfall-driven seasonal cycle in V. vulnificus abundance which is inverted from the temperature-driven seasonal cycle at higher latitudes. However, stochasticity in rainfall and its nonlinear, indirect effects on V. vulnificus concentration means that high abundances can occur at any location in the canal at any time of year, making it challenging to predict concentrations of this pathogen at a high temporal or spatial resolution. Much of the variability in canal-wide average concentrations, on the other hand, was explained by a few variables that reflect the magnitude of freshwater input to the system, suggesting that relative risk of exposure to this pathogen could be predicted as an average for the system.


Asunto(s)
Vibrio vulnificus , Estuarios , Agua Dulce , Humanos , Salinidad , Temperatura , Vibrio vulnificus/genética
19.
BMC Microbiol ; 22(1): 256, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271365

RESUMEN

BACKGROUND: A visual, rapid, simple method was developed based on a loop-mediated isothermal amplification (LAMP) assay to detect Vibrio vulnificus in aquatic products and aquaculture waters. RESULTS: Genomic DNA was extracted from Vibrio vulnificus using the boiling method, and optimized primers were used to detect the gyrB gene using a visual LAMP method. The sensitivity of the assay was 10 fg/µL, and the obtained results were stable and reliable. Out of 655 aquatic product samples and 558 aquaculture water samples, the positive rates of Vibrio vulnificus detection were 9.01% and 8.60%, respectively, which are markedly higher than those of the traditional culture identification methods. CONCLUSION: The relatively simple technical requirements, low equipment cost, and rapid detection make the visual LAMP method for the detection of Vibrio vulnificus a convenient choice for field detection in the aquaculture industry.


Asunto(s)
Vibrio vulnificus , Vibrio vulnificus/genética , Agua , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
20.
BMC Microbiol ; 22(1): 200, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974308

RESUMEN

Vibrio vulnificus is a pathogenic bacterium that causes disease in marine fish, affecting fish farming and human health worldwide. In May 2021, in the Bohai Bay region, a disease broke out in commercially farmed pearl gentian grouper (♀Epinephelus fuscoguttatus × â™‚Epinephelus lanceolatus), causing huge economic losses. The diseased fish had skin lesions, water accumulation in their abdomens, and showed tissue and organ damage. V. vulnificus biotype 2 has been reported in eels and other marine fish, but it is less reported in pearl gentian grouper. In this study, the pathogenic strain isolated from diseased fish was identified as V. vulnificus EPL 0201 biotype 2 on the basis of physiological and biochemical characteristics and the results of 16S rRNA gene and gyrB sequencing, virulence gene detection, and recursive infection experiments. To gain a comprehensive understanding of the pathogenicity and drug resistance of this strain, whole-genome sequencing was performed. Whole-genome analysis showed that the gene map of this strain was complete. The Virulence Factor Database annotation results showed that this strain had the key virulence factor genes vvhA and rtxA, which cause host disease. In addition, this strain had genes conferring resistance against cephalosporins, aminoglycosides, tetracyclines, and sulfonamides. Antimicrobial susceptibility testing confirmed the presence of these resistance genes identified in the genome. The results of this study show that V. vulnificus EPL 0201 biotype 2 is a multi-drug resistant strain with high pathogenicity.


Asunto(s)
Lubina , Vibriosis , Vibrio vulnificus , Vibrio , Animales , Antibacterianos/farmacología , Anguilas/genética , Anguilas/microbiología , Humanos , ARN Ribosómico 16S/genética , Vibrio/genética , Vibriosis/microbiología , Vibriosis/veterinaria , Vibrio vulnificus/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA