Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 28(12): 2446-2454, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417933

RESUMEN

African horse sickness (AHS) is a highly infectious and often fatal disease caused by 9 serotypes of the orbivirus African horse sickness virus (AHSV). In March 2020, an AHS outbreak was reported in Thailand in which AHSV serotype 1 was identified as the causative agent. Trivalent live attenuated vaccines serotype 1, 3, and 4 were used in a targeted vaccination campaign within a 50-km radius surrounding the infected cases, which promptly controlled the spread of the disease. However, AHS-like symptoms in vaccinated horses required laboratory diagnostic methods to differentiate infected horses from vaccinated horses, especially for postvaccination surveillance. We describe a real-time reverse transcription PCR-based assay for rapid characterization of the affecting field strain. The development and validation of this assay should imbue confidence in differentiating AHS-vaccinated horses from nonvaccinated horses. This method should be applied to determining the epidemiology of AHSV in future outbreaks.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Orbivirus , Animales , Caballos , Virus de la Enfermedad Equina Africana/genética , Serogrupo , Reacción en Cadena en Tiempo Real de la Polimerasa , Enfermedad Equina Africana/diagnóstico , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/prevención & control , Vacunas Atenuadas
2.
Emerg Infect Dis ; 27(8): 2208-2211, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287126

RESUMEN

To investigate an outbreak of African horse sickness (AHS) on a horse farm in northeastern Thailand, we used whole-genome sequencing to detect and characterize the virus. The viruses belonged to serotype 1 and contained unique amino acids (95V,166S, 660I in virus capsid protein 2), suggesting a single virus introduction to Thailand.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Enfermedad Equina Africana/epidemiología , Virus de la Enfermedad Equina Africana/genética , Animales , Granjas , Caballos , Serogrupo , Tailandia/epidemiología
3.
Rev Sci Tech ; 40(1): 91-104, 2021 Jun.
Artículo en Inglés, Francés, Español | MEDLINE | ID: mdl-34140738

RESUMEN

The availability of rapid, highly sensitive and specific molecular and serologic diagnostic assays, such as competitive enzyme-linked immunosorbent assay (cELISA), has expedited the diagnosis of emerging transboundary animal diseases, including bluetongue (BT) and African horse sickness (AHS), and facilitated more thorough characterisation of their epidemiology. The development of assays based on real-time, reverse-transcription polymerase chain reaction (RT-PCR) to detect and identify the numerous serotypes of BT virus (BTV) and AHS virus (AHSV) has aided in-depth studies of the epidemiology of BTV infection in California and AHSV infection in South Africa. The subsequent evaluation of pan-serotype, real-time, RT-PCR-positive samples through the use of serotype-specific RT-PCR assays allows the rapid identification of virus serotypes, reducing the need for expensive and time-consuming conventional methods, such as virus isolation and serotype-specific virus neutralisation assays. These molecular assays and cELISA platforms provide tools that have enhanced epidemiologic surveillance strategies and improved our understanding of potentially altered Culicoides midge behaviour when infected with BTV. They have also supported the detection of subclinical AHSV infection of vaccinated horses in South Africa. Moreover, in conjunction with whole genome sequence analysis, these tests have clarified that the mechanism behind recent outbreaks of AHS in the AHS-controlled area of South Africa was the result of the reversion to virulence and/or genome reassortment of live attenuated vaccine viruses. This review focuses on the use of contemporary molecular diagnostic assays in the context of recent epidemiologic studies and explores their advantages over historic virus isolation and serologic techniques.


La disponibilité d'essais diagnostiques moléculaires et sérologiques rapides, hautement sensibles et spécifiques tels que l'épreuve immuno-enzymatique de compétition (ELISAc), a accéléré le diagnostic des maladies animales transfrontalières émergentes, dont la fièvre catarrhale ovine (FCO) et la peste équine, et contribué à dresser un tableau épidémiologique plus complet de ces maladies. Grâce à la mise au point d'essais basés sur l'amplification en chaîne par polymérase en temps réel couplée à une transcription inverse (RT­PCR) qui permettent de détecter et d'identifier les nombreux sérotypes du virus de la fièvre catarrhale du mouton et du virus de la peste équine, des études approfondies ont pu être conduites sur l'épidémiologie de l'infection par le virus de la fièvre catarrhale du mouton en Californie et de l'infection par le virus de la peste équine en Afrique du Sud. L'évaluation postérieure des échantillons positifs à une RT­PCR en temps réel de groupe (détectant le virus quel que soit le sérotype) au moyen de RT­PCR spécifiques de chaque sérotype permet d'identifier rapidement le sérotype causal et de limiter le recours à des méthodes classiques onéreuses et chronophages comme l'isolement viral ou les essais de neutralisation virale spécifiques de chaque sérotype. Les outils fournis par ces essais moléculaires et par les plateformes ELISAc ont renforcé les stratégies de surveillance épidémiologique et permis de mieux connaître les altérations potentielles de comportement chez les tiques Culicoides infectées par le virus de la fièvre catarrhale du mouton. Ils ont également contribué à détecter les cas d'infection asymptomatique par le virus de la peste équine chez des chevaux vaccinés en Afrique du Sud. En outre, associés avec l'analyse de séquences du génome entier, ces tests ont révélé que le mécanisme sous-jacent aux récents foyers de peste équine dans la zone de contrôle en Afrique du Sud correspondait à une réversion vers la virulence et/ou à un réassortiment du génome des souches de vaccin à virus vivant atténué. Les auteurs passent en revue l'utilisation des essais de diagnostic moléculaire de nouvelle génération dans le contexte de récentes études épidémiologiques et cherchent à établir leurs avantages par rapport aux techniques classiques d'isolement viral et de recherche sérologique.


La existencia de ensayos moleculares y serológicos de diagnóstico rápidos y de gran sensibilidad y especificidad, como el ensayo inmunoenzimático de competición (ELISAc), ha acelerado el diagnóstico de enfermedades animales transfronterizas emergentes, como la lengua azul o la peste equina, y facilitado una caracterización más exhaustiva de su epidemiología. La creación de ensayos basados en la reacción en cadena de la polimerasa acoplada a transcripción inversa (RT?PCR) en tiempo real para detectar y caracterizar los numerosos serotipos de los virus de la lengua azul y la peste equina ha ayudado a estudiar a fondo la epidemiología de sendos episodios infecciosos causados por el virus de la lengua azul en California y por el virus de la peste equina en Sudáfrica. El subsiguiente análisis de las muestras positivas a la prueba de RT?PC en tiempo real de cualquier serotipo con empleo de ensayos RT?PCR dirigidos específicamente contra uno u otro serotipo permite identificar rápidamente los serotipos víricos, lo que hace menos necesario el uso de métodos convencionales más caros y largos, como el aislamiento del virus o técnicas de neutralización vírica adaptadas específicamente a un serotipo. Estos dispositivos de ensayo molecular o de ELISAc ponen a nuestra disposición herramientas que potencian las estrategias de vigilancia epidemiológica y ayudan a conocer mejor las eventuales alteraciones del comportamiento de los jejenes Culicoides al ser infectados por el virus de la lengua azul. Estas técnicas han ayudado también a detectar en Sudáfrica casos de infección asintomática por el virus de la peste equina en caballos vacunados. Estas pruebas, además, empleadas en combinación con el análisis de secuencias genómicas completas, han servido para aclarar que el mecanismo subyacente a los recientes brotes de peste equina surgidos en la zona de Sudáfrica donde la enfermedad estaba bajo control fue fruto de la reversión a la virulencia y/o el reordenamiento genómico de virus vacunales atenuados. Los autores, centrándose en el uso de modernos ensayos moleculares de diagnóstico como parte de recientes estudios epidemiológicos, examinan las ventajas que ofrecen en comparación con las tradicionales técnicas serológicas y de aislamiento vírico.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Virus de la Lengua Azul , Lengua Azul , Enfermedades de los Caballos , Enfermedades de las Ovejas , Enfermedad Equina Africana/diagnóstico , Enfermedad Equina Africana/epidemiología , Virus de la Enfermedad Equina Africana/genética , Animales , Lengua Azul/diagnóstico , Lengua Azul/epidemiología , Virus de la Lengua Azul/genética , Caballos , Ovinos , Sudáfrica/epidemiología
4.
J Gen Virol ; 101(4): 366-384, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32125263

RESUMEN

African horse sickness virus (AHSV) is the causative agent of the often fatal disease African horse sickness in equids. The non-structural protein NS4 is the only AHSV protein that localizes to the nucleus. Here we report that all AHSV reference and representative field strains express one of the two forms of NS4, i.e. NS4-I or NS4-II. Both forms of NS4 are nucleocytoplasmic proteins, but NS4-I has a stronger nuclear presence whilst NS4-II has a proportionally higher cytoplasmic distribution. A subtype of NS4-II containing a nuclear localization signal (NLS), named NLS-NS4-II, displays distinct punctate foci in the nucleus. We showed that NS4 likely enters the nucleus via passive diffusion as a result of its small size. Colocalization analysis with nuclear compartments revealed that NS4 colocalizes with promyelocytic leukaemia nuclear bodies (PML-NBs), suggesting a role in the antiviral response or interferon signalling. Interestingly, we showed that two other AHSV proteins also interact with nuclear components. A small fraction of the NS1 tubules were present in the nucleus and associated with PML-NBs; this was more pronounced for a virus strain lacking NS4. A component of nuclear speckles, serine and arginine rich splicing factor 2 (SRSF2) was recruited to viral inclusion bodies (VIBs) in the cytoplasm of AHSV-infected cells and colocalized with NS2. Nuclear speckles are important sites for cellular mRNA transcript processing and maturation. Collectively, these results provide data on three AHSV non-structural proteins interacting with host cell nuclear components that could contribute to overcoming antiviral responses and creating conditions that will favour viral replication.


Asunto(s)
Virus de la Enfermedad Equina Africana/metabolismo , Núcleo Celular/virología , Citoplasma/virología , Genoma Viral , Factores de Empalme Serina-Arginina/metabolismo , Proteínas Virales/metabolismo , Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/patogenicidad , Animales , Cuerpos Enrollados/metabolismo , Cricetinae , Interacciones Microbiota-Huesped , Cuerpos de Inclusión Viral/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Factores de Empalme Serina-Arginina/genética , Serogrupo , Células Sf9 , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral
5.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023235

RESUMEN

Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.


Asunto(s)
Virus de la Enfermedad Equina Africana/efectos de los fármacos , Ácido Aurintricarboxílico/farmacocinética , Virus de la Lengua Azul/efectos de los fármacos , Virosis/tratamiento farmacológico , Enfermedad Equina Africana/tratamiento farmacológico , Enfermedad Equina Africana/genética , Enfermedad Equina Africana/virología , Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/patogenicidad , Animales , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Ceratopogonidae/patogenicidad , Ceratopogonidae/virología , Caballos/virología , Ovinos/virología , Virosis/genética , Virosis/virología , Replicación Viral/efectos de los fármacos
6.
J Virol ; 90(16): 7405-7414, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27279609

RESUMEN

UNLABELLED: African horse sickness virus (AHSV), an orbivirus in the Reoviridae family with nine different serotypes, causes devastating disease in equids. The virion particle is composed of seven proteins organized in three concentric layers, an outer layer made of VP2 and VP5, a middle layer made of VP7, and inner layer made of VP3 that encloses a replicase complex of VP1, VP4, and VP6 and a genome of 10 double-stranded RNA segments. In this study, we sought to develop highly efficacious candidate vaccines against all AHSV serotypes, taking into account not only immunogenic and safety properties but also virus productivity and stability parameters, which are essential criteria for vaccine candidates. To achieve this goal, we first established a highly efficient reverse genetics (RG) system for AHSV serotype 1 (AHSV1) and, subsequently, a VP6-defective AHSV1 strain in combination with in trans complementation of VP6. This was then used to generate defective particles of all nine serotypes, which required the exchange of two to five RNA segments to achieve equivalent titers of particles. All reassortant-defective viruses could be amplified and propagated to high titers in cells complemented with VP6 but were totally incompetent in any other cells. Furthermore, these replication-incompetent AHSV particles were demonstrated to be highly protective against homologous virulent virus challenges in type I interferon receptor (IFNAR)-knockout mice. Thus, these defective viruses have the potential to be used for the development of safe and stable vaccine candidates. The RG system also provides a powerful tool for the study of the role of individual AHSV proteins in virus assembly, morphogenesis, and pathogenesis. IMPORTANCE: African horse sickness virus is transmitted by biting midges and causes African horse sickness in equids, with mortality reaching up to 95% in naive horses. Therefore, the development of efficient vaccines is extremely important due to major economic losses in the equine industry. Through the establishment of a highly efficient RG system, replication-deficient viruses of all nine AHSV serotypes were generated. These defective viruses achieved high titers in a cell line complemented with VP6 but failed to propagate in wild-type mammalian or insect cells. Importantly, these candidate vaccine strains showed strong protective efficacy against AHSV infection in an IFNAR(-/-) mouse model.


Asunto(s)
Virus de la Enfermedad Equina Africana/inmunología , Enfermedad Equina Africana/prevención & control , Virus Defectuosos/inmunología , Vacunas Virales/metabolismo , Virión/metabolismo , Ensamble de Virus , Replicación Viral , Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/fisiología , Animales , Virus Defectuosos/genética , Virus Defectuosos/fisiología , Modelos Animales de Enfermedad , Eliminación de Gen , Ratones , Ratones Noqueados , Genética Inversa , Serogrupo , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
7.
Microsc Microanal ; 23(1): 56-68, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28112080

RESUMEN

The bulk of the major core protein VP7 in African horse sickness virus (AHSV) self-assembles into flat, hexagonal crystalline particles in a process appearing unrelated to viral replication. Why this unique characteristic of AHSV VP7 is genetically conserved, and whether VP7 aggregation and particle formation have an effect on cellular biology or the viral life cycle, is unknown. Here we investigated how different small peptide and enhanced green fluorescent protein (eGFP) insertions into the VP7 top domain affected VP7 localization, aggregation, and particle formation. This was done using a dual laser scanning confocal and transmission electron microscopy approach in conjunction with analyses of the solubility, aggregation, and fluorescence profiles of the proteins. VP7 top domain modifications did not prevent trimerization, or intracellular trafficking, to one or two discrete sites in the cell. However, modifications that resulted in a misfolded and insoluble VP7-eGFP component blocked trafficking, and precluded protein accumulation at a single cellular site, perhaps by interfering with normal trimer-trimer interactions. Furthermore, the modifications disrupted the stable layering of the trimers into characteristic AHSV VP7 crystalline particles. It was concluded that VP7 trafficking is driven by a balance between VP7 solubility, trimer forming ability, and trimer-trimer interactions.


Asunto(s)
Virus de la Enfermedad Equina Africana/metabolismo , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión/métodos , Proteínas del Núcleo Viral/fisiología , Proteínas del Núcleo Viral/ultraestructura , Virus de la Enfermedad Equina Africana/genética , Animales , Baculoviridae/genética , Regulación Viral de la Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes , Estadios del Ciclo de Vida , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/ultraestructura , Células Sf9 , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/genética , Proteínas Virales de Fusión/fisiología , Proteínas Virales de Fusión/ultraestructura , Replicación Viral
8.
Rev Sci Tech ; 36(3): 889-898, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-30160693

RESUMEN

African horse sickness virus (AHSV) is one of the most devastating viral diseases of the family Equidae. Infection with AHSV threatens not only the Saudi equine industry but also the equine industry worldwide. This is due to the high morbidity and mortality rates among the infected population of up to 100%. The World Organisation for Animal Health (OIE) lists AHSV among its notifiable diseases; this requires Member Countries to monitor the situation with regard to AHSV very carefully in order to avoid the spread of the virus. The OIE also suggests the systematic monitoring of AHSV in the equine population at regular intervals. The main aim of the current study is to perform molecular and serological surveillance on different horse populations in eastern and central regions of Saudi Arabia. To achieve this aim, the authors collected 361 serum samples, 103 whole blood samples and 323 swabs from Al-Hasa, Dammam, Al-Jubail, Al-Qateef, Riyadh and Al-Qassim. Commercial enzyme-linked immunosorbent assay (ELISA) kits were used to detect AHSV antibodies and commercial real-time reverse transcriptase-polymerase chain reaction (RT-PCR) kits were used to detect AHSV nucleic acids in blood and swabs. The results of this study demonstrate the absence of anti-AHSV antibodies in the sera of tested animals. Furthermore, no viral nucleic acids were detected in the collected blood and swab samples, as evaluated by real-time AHSV-RT-PCR. Moreover, all tested samples collected during 2014-2016 were negative for AHSV. This confirms that the horse populations studied in the eastern and central regions of Saudi Arabia during 2014-2016 were AHSV free.


Le virus de la peste équine est responsable d'une des maladies virales les plus dévastatrices affectant les membres de la famille des Equidae. Les infections par le virus de la peste équine sont une menace pour le secteur équin saoudien et plus largement pour celui du monde entier. La gravité de cette menace est due aux taux de morbidité et de mortalité extrêmement élevés dans les populations atteintes, pouvant atteindre 100 %. L'infection par le virus de la peste équine fait partie des maladies à déclaration obligatoire de l'Organisation mondiale de la santé animale (OIE) ; de ce fait, les Pays membres doivent suivre la situation sanitaire de leur cheptel au regard du virus de la peste équine afin d'éviter sa propagation. L'OIE recommande également de réaliser un dépistage systématique et régulier du virus de la peste équine dans la population équine. Les auteurs présentent les résultats d'une étude basée sur la surveillance moléculaire et sérologique de plusieurs populations de chevaux dans les régions orientale et centrale de l'Arabie saoudite. Pour les besoins de cette étude, les auteurs ont prélevé 323 échantillons de sérum, 103 échantillons de sang entier et 323 écouvillons de chevaux provenant des localités d'Al-Hasa, Dammam, Al-Jubail, Al-Qatif, Riyad et Al-Qasim. Une épreuve immuno-enzymatique (ELISA) sous forme de kits du commerce a été utilisée pour détecter la présence d'anticorps dirigés contre le virus de la peste équine ; la présence dans le sang et les écouvillons d'acides nucléiques spécifiques du virus de la peste équine a été détectée au moyen d'une amplification en chaîne par polymérase couplée à une transcription inverse (RT­PCR) du commerce. Les résultats de cette étude ont montré l'absence d'anticorps dirigés contre le virus de la peste équine dans le sérum des animaux testés. De même, la RT­PCR en temps réel n'a pas détecté d'acides nucléiques spécifiques du virus de la peste équine dans les prélèvements de sang ni les écouvillons analysés. En outre, tous les échantillons collectés entre 2014 et 2016 et soumis à un test ont donné des résultats négatifs pour le virus de la peste équine. Ces résultats confirment que les populations de chevaux étudiées entre 2014 et 2016 dans les régions orientale et centrale de l'Arabie saoudite étaient indemnes de peste équine.


El virus de la peste equina provoca una de las enfermedades víricas más devastadoras que afectan a la familia de los équidos. La infección por este virus amenaza al sector equino no solo de Arabia Saudí, sino del mundo entero, dado que en las poblaciones infectadas las tasas de morbilidad y mortalidad pueden llegar al 100%. La Organización Mundial de Sanidad Animal (OIE) tiene incluida esta infección en su lista de enfermedades de declaración obligatoria, lo que obliga a sus Países Miembros a seguir muy de cerca la situación sanitaria al respecto para evitar que el virus se disemine. La OIE también sugiere hacer periódicamente controles sistemáticos de la presencia del virus en la población equina. Los autores describen un estudio encaminado básicamente a realizar operaciones de vigilancia molecular y serológica de diferentes poblaciones de caballos de las regiones oriental y central de Arabia Saudí. Para ello, los autores obtuvieron 361 muestras de suero, 103 muestras de sangre entera y 323 hisopados en las áreas de Al Hasa, Dammam, Jubail, Qatif, Riad y Casim. Para detectar anticuerpos contra el virus de la peste equina utilizaron un estuche comercial de ensayo inmunoenzimático (ELISA) y para detectar la presencia de ácidos nucleicos del virus en muestras sanguíneas e hisopados un estuche comercial de reacción en cadena de la polimerasa con retrotranscriptasa (RT­PCR) en tiempo real. Los resultados del estudio demuestran la ausencia de anticuerpos contra el virus en el suero de los animales analizados. La técnica de RT­PCR en tiempo real tampoco deparó indicio alguno de la presencia de ácido nucleico vírico en las muestras de sangre e hisopados. Además, todas las muestras analizadas obtenidas entre 2014 y 2016 resultaron negativas para el virus, lo que confirma que las poblaciones equinas estudiadas durante ese periodo en las regiones central y oriental de Arabia Saudí estaban libres del virus de la peste equina.


Asunto(s)
Virus de la Enfermedad Equina Africana/genética , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/sangre , Enfermedad Equina Africana/virología , Animales , Anticuerpos Antivirales/sangre , Caballos , Arabia Saudita/epidemiología , Estudios Seroepidemiológicos
9.
Emerg Infect Dis ; 22(12): 2087-2096, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27442883

RESUMEN

African horse sickness (AHS) is a hemorrhagic viral fever of horses. It is the only equine disease for which the World Organization for Animal Health has introduced specific guidelines for member countries seeking official recognition of disease-free status. Since 1997, South Africa has maintained an AHS controlled area; however, sporadic outbreaks of AHS have occurred in this area. We compared the whole genome sequences of 39 AHS viruses (AHSVs) from field AHS cases to determine the source of 3 such outbreaks. Our analysis confirmed that individual outbreaks were caused by virulent revertants of AHSV type 1 live, attenuated vaccine (LAV) and reassortants with genome segments derived from AHSV types 1, 3, and 4 from a LAV used in South Africa. These findings show that despite effective protection of vaccinated horses, polyvalent LAV may, paradoxically, place susceptible horses at risk for AHS.


Asunto(s)
Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/inmunología , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/virología , Genoma Viral , Virus Reordenados , Vacunas Atenuadas , Vacunas Virales , Enfermedad Equina Africana/historia , Enfermedad Equina Africana/prevención & control , Virus de la Enfermedad Equina Africana/clasificación , Virus de la Enfermedad Equina Africana/patogenicidad , Animales , Brotes de Enfermedades , Genotipo , Historia del Siglo XXI , Caballos , Filogenia , Polimorfismo de Nucleótido Simple , Virus Reordenados/genética , Virus Reordenados/inmunología , Serotipificación , Sudáfrica/epidemiología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Secuenciación Completa del Genoma
10.
J Virol ; 89(17): 8764-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26063433

RESUMEN

UNLABELLED: African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate "synthetic" reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics. Reverse genetics for AHSV was also used to study Seg-10 expressing NS3/NS3a proteins. We demonstrated that NS3/NS3a proteins are not essential for AHSV replication in vitro. NS3/NS3a of AHSV is, however, involved in the cytopathogenic effect in mammalian cells and is very important for virus release from cultured insect cells in particular. Similar to the concept of the bluetongue disabled infectious single animal (BT DISA) vaccine platform, an AHS DISA vaccine platform lacking NS3/NS3a expression was developed. Using exchange of genome segment 2 encoding VP2 protein (Seg-2[VP2]), we will be able to develop AHS DISA vaccine candidates for all current AHSV serotypes. IMPORTANCE: African horse sickness virus is transmitted by species of Culicoides biting midges and causes African horse sickness in equids, with a mortality rate of up to 95% in naive horses. African horse sickness has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are supposed to be competent vectors. By using reverse genetics, viruses of all nine serotypes were constructed by the exchange of Seg-2 expressing the serotype-determining VP2 protein. Furthermore, we demonstrated that the nonstructural protein NS3/NS3a is not essential for virus replication in vitro. However, the potential spread of the virus by biting midges is supposed to be blocked, since the in vitro release of the virus was strongly reduced due to this deletion. VP2 exchange and NS3/NS3a deletion in African horse sickness virus were combined in the concept of a disabled infectious single animal vaccine for all nine serotypes.


Asunto(s)
Virus de la Enfermedad Equina Africana/inmunología , Enfermedad Equina Africana/inmunología , Proteínas de la Cápside/inmunología , Caballos/virología , Proteínas no Estructurales Virales/genética , Enfermedad Equina Africana/prevención & control , Enfermedad Equina Africana/virología , Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Proteínas de la Cápside/genética , Línea Celular , Ceratopogonidae/virología , Cricetinae , Genoma Viral/genética , Caballos/inmunología , Mutación/genética , Vacunas Atenuadas/inmunología , Vacunas de Subunidad/inmunología , Vacunas Virales/inmunología , Replicación Viral/genética
11.
Virol J ; 13: 119, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27368544

RESUMEN

BACKGROUND: Bluetongue virus (BTV) and African horse sickness virus (AHSV) are distinct arthropod borne virus species in the genus Orbivirus (Reoviridae family), causing the notifiable diseases Bluetongue and African horse sickness of ruminants and equids, respectively. Reverse genetics systems for these orbiviruses with their ten-segmented genome of double stranded RNA have been developed. Initially, two subsequent transfections of in vitro synthesized capped run-off RNA transcripts resulted in the recovery of BTV. Reverse genetics has been improved by transfection of expression plasmids followed by transfection of ten RNA transcripts. Recovery of AHSV was further improved by use of expression plasmids containing optimized open reading frames. RESULTS: Plasmids containing full length cDNA of the 10 genome segments for T7 promoter-driven production of full length run-off RNA transcripts and expression plasmids with optimized open reading frames (ORFs) were used. BTV and AHSV were rescued using reverse genetics. The requirement of each expression plasmid and capping of RNA transcripts for reverse genetics were studied and compared for BTV and AHSV. BTV was recovered by transfection of VP1 and NS2 expression plasmids followed by transfection of a set of ten capped RNAs. VP3 expression plasmid was also required if uncapped RNAs were transfected. Recovery of AHSV required transfection of VP1, VP3 and NS2 expression plasmids followed by transfection of capped RNA transcripts. Plasmid-driven expression of VP4, 6 and 7 was also needed when uncapped RNA transcripts were used. Irrespective of capping of RNA transcripts, NS1 expression plasmid was not needed for recovery, although NS1 protein is essential for virus propagation. Improvement of reverse genetics for AHSV was clearly demonstrated by rescue of several mutants and reassortants that were not rescued with previous methods. CONCLUSIONS: A limited number of expression plasmids is required for rescue of BTV or AHSV using reverse genetics, making the system much more versatile and generally applicable. Optimization of reverse genetics enlarge the possibilities to rescue virus mutants and reassortants, and will greatly benefit the control of these important diseases of livestock and companion animals.


Asunto(s)
Virus de la Enfermedad Equina Africana/genética , Enfermedad Equina Africana/virología , Virus de la Lengua Azul/genética , Lengua Azul/virología , Genética Inversa/métodos , Virus de la Enfermedad Equina Africana/metabolismo , Animales , Virus de la Lengua Azul/metabolismo , Genoma Viral , Caballos , Plásmidos/genética , Plásmidos/metabolismo , ARN Viral/genética , Rumiantes/virología
12.
PLoS One ; 19(4): e0301340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625924

RESUMEN

A safe, highly immunogenic multivalent vaccine to protect against all nine serotypes of African horse sickness virus (AHSV), will revolutionise the AHS vaccine industry in endemic countries and beyond. Plant-produced AHS virus-like particles (VLPs) and soluble viral protein 2 (VP2) vaccine candidates were developed that have the potential to protect against all nine serotypes but can equally well be formulated as mono- and bi-valent formulations for localised outbreaks of specific serotypes. In the first interferon α/ß receptor knock-out (IFNAR-/-) mice trial conducted, a nine-serotype (nonavalent) vaccine administered as two pentavalent (5 µg per serotype) vaccines (VLP/VP2 combination or exclusively VP2), were directly compared to the commercially available AHS live attenuated vaccine. In a follow up trial, mice were vaccinated with an adjuvanted nine-serotype multivalent VP2 vaccine in a prime boost strategy and resulted in the desired neutralising antibody titres of 1:320, previously demonstrated to confer protective immunity in IFNAR-/- mice. In addition, the plant-produced VP2 vaccine performed favourably when compared to the commercial vaccine. Here we provide compelling data for a nonavalent VP2-based vaccine candidate, with the VP2 from each serotype being antigenically distinguishable based on LC-MS/MS and ELISA data. This is the first preclinical trial demonstrating the ability of an adjuvanted nonavalent cocktail of soluble, plant-expressed AHS VP2 proteins administered in a prime-boost strategy eliciting high antibody titres against all 9 AHSV serotypes. Furthermore, elevated T helper cells 2 (Th2) and Th1, indicative of humoral and cell-mediated memory T cell immune responses, respectively, were detected in mouse serum collected 14 days after the multivalent prime-boost vaccination. Both Th2 and Th1 may play a role to confer protective immunity. These preclinical immunogenicity studies paved the way to test the safety and protective efficacy of the plant-produced nonavalent VP2 vaccine candidate in the target animals, horses.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Vacunas Virales , Animales , Ratones , Caballos , Virus de la Enfermedad Equina Africana/genética , Enfermedad Equina Africana/prevención & control , Vacunas Combinadas , Cromatografía Liquida , Proteínas de la Cápside , Espectrometría de Masas en Tándem , Anticuerpos Antivirales
13.
J Gen Virol ; 94(Pt 10): 2259-2265, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23860489

RESUMEN

African horse sickness virus (AHSV) is an insect-vectored emerging pathogen of equine species. AHSV (nine serotypes) is a member of the genus Orbivirus, with a morphology and coding strategy similar to that of the type member, bluetongue virus. However, these viruses are distinct at the genetic level, in the proteins they encode and in their pathobiology. AHSV infection of horses is highly virulent with a mortality rate of up to 90 %. AHSV is transmitted by Culicoides, a common European insect, and has the potential to emerge in Europe from endemic countries of Africa. As a result, a safe and effective vaccine is sought urgently. As part of a programme to generate a designed highly attenuated vaccine, we report here the recovery of AHSV from a complete set of RNA transcripts synthesized in vitro from cDNA clones. We have demonstrated the generation of mutant and reassortant AHSV genomes, their recovery, stable passage, and characterization. Our findings provide a new approach to investigate AHSV replication, to design AHSV vaccines and to aid diagnosis.


Asunto(s)
Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/metabolismo , ARN Viral/biosíntesis , ARN Viral/química , Animales , Línea Celular , Clonación Molecular , Cricetinae , Regulación Viral de la Expresión Génica/fisiología , Genoma Viral , ARN Viral/genética , Virus Reordenados , Replicación Viral
14.
Viruses ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893692

RESUMEN

A unique characteristic of the African horse sickness virus (AHSV) major core protein VP7 is that it is highly insoluble, and spontaneously forms crystalline particles in AHSV-infected cells and when expressed in vitro. The aggregation of AHSV VP7 into these crystals presents many problems in AHSV vaccine development, and it is unclear whether VP7 aggregation affects AHSV assembly or contributes to AHSV pathogenesis. Here, we set out to abolish VP7 self-assembly by targeting candidate amino acid regions on the surface of the VP7 trimer via site-directed mutagenesis. It was found that the substitution of seven amino acids resulted in the complete disruption of AHSV VP7 self-assembly, which abolished the formation of VP7 crystalline particles and converted VP7 to a fully soluble protein still capable of interacting with VP3 to form core-like particles. This work provides further insight into the formation of AHSV VP7 crystalline particles and the successful development of AHSV vaccines. It also paves the way for future research by drawing comparisons with similar viral phenomena observed in human virology.


Asunto(s)
Virus de la Enfermedad Equina Africana , Proteínas del Núcleo Viral , Virus de la Enfermedad Equina Africana/genética , Animales , Antígenos Virales , Proteínas del Núcleo Viral/metabolismo
15.
N Biotechnol ; 68: 48-56, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35114407

RESUMEN

African horse sickness (AHS) is a debilitating and highly infectious arthropod-borne disease affecting all species of Equidae. The causative agent of AHS is the non-enveloped dsRNA African horse sickness virus (AHSV), belonging in the genus Orbivirus, family Reoviridae. The identification and surveillance of AHSV by simple and reliable diagnostic tools is essential for managing AHS outbreaks. Indirect ELISAs utilising soluble AHSV antigen or recombinant VP7, an immunodominant and serogroup-specific major core structural protein, are commonly used for serological diagnostic assays. Plant production systems are a significant alternative for recombinant protein production, as they are safe, easily scalable, production rates are rapid and upstream processes are more cost-effective than more traditional expression systems. This pilot study reports the successful production of AHSV-5 VP7 quasi-crystals in Nicotiana benthamiana by Agrobacterium tumefaciens-mediated transient expression using the self-replicating pRIC3.0 plant expression vector. After purification by means of density gradient ultracentrifugation, yields of pure VP7 of 2.66 µg/g fresh leaf mass (FLM) were achieved. Purified plant-produced AHSV-5 VP7 detected AHSV-specific antibodies in horse sera in an indirect ELISA and was able to distinguish between AHSV-positive and negative sera. Additionally, plant-produced AHSV-5 VP7 detected AHSV-specific antibodies to the same degree as E. coli-produced VP7. These results justify further investigation into the diagnostic capability of plant-produced AHSV VP7 quasi-crystals. To the best of our knowledge, this is the first report of AHSV VP7 quasi-crystal production in N. benthamiana and the first time that plant-produced VP7's potential as a diagnostic has been assessed.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Enfermedad Equina Africana/diagnóstico , Virus de la Enfermedad Equina Africana/genética , Animales , Escherichia coli , Caballos , Proyectos Piloto , Proteínas del Núcleo Viral/metabolismo
16.
Virus Res ; 307: 198609, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34688785

RESUMEN

Expanding on our previous work, this study used transcriptome analysis of RNA sequences to investigate the various factors that contributed to either inducing apoptosis that resulted in cell death or promoting the survival of African horse sickness virus serotype 4 (AHSV4)-infected horse peripheral blood mononuclear cells (PBMC) after 24 h. Apoptosis is a host defense mechanism that prevents virus replication, accumulation and spread of progeny viruses. AHSV4-infected PBMC were killed via the intrinsic and the perforin/granzyme pathways of apoptosis during the attenuated AHSV4 (attAHSV4) in vivo primary and secondary immune responses. Trained innate immunity played an important role in circumventing viral interference that resulted in the elimination of AHSV4-infected PBMC through the intrinsic and the extrinsic pathways of apoptosis during the virulent AHSV4 (virAHSV4) in vitro secondary immune response. Oxidative stress in conjunction with IRE1α pro-apoptotic signaling played a major role in the induction of the intrinsic pathway of apoptosis and cytotoxic lymphocytes induced the perforin/granzyme or extrinsic pathways of apoptosis. In contrast, AHSV4-infected PBMC survived during the virAHSV4 in vitro primary immune response, which allows unrestrained viral replication. The virAHSV4 interference with the innate immune response resulted in impaired NK cell responses and delayed immune responses, which together with the antioxidant defense system promoted AHSV4-infected PBMC survival.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Virus de la Enfermedad Equina Africana/genética , Animales , Apoptosis , Endorribonucleasas , Granzimas , Caballos , Inmunidad Innata , Leucocitos Mononucleares , Perforina/genética , Proteínas Serina-Treonina Quinasas , Serogrupo
17.
J Equine Vet Sci ; 119: 104137, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36223818

RESUMEN

African horse sickness (AHS) is a viral disease of equids, caused by a virus of the genus Orbivirus, family Reoviridae. The African horse sickness virus (AHSV) genome is made up of ten double-stranded RNA (dsRNA) segments that together code for seven structural and four nonstructural proteins. AHS is endemic in sub-Saharan countries. The efficacy and safety of inactivated AHS vaccines containing all nine serotypes, produced at the Central Veterinary Research Laboratory (CVRL) in Dubai, United Arab Emirates have been proven in the past. All nine AHSV serotypes were isolated from 102 samples collected in the last 20 years from horse fatalities in seven different area of Kenya, Africa. CVRL inactivated AHS vaccines are used in a few African countries defining the importance of this present study to compare the genome sequences of the nine AHSV serotypes isolated from horse fatalities in Kenya and nine AHSV serotypes isolated in South Africa. The hypothesized serotypes of the newly sequenced AHSV field strains from Kenya were likewise confirmed in this investigation, and they show substantial sequence homologies with recently isolated AHSV field strains.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Enfermedades de los Caballos , Orbivirus , Animales , Caballos , Enfermedad Equina Africana/epidemiología , Virus de la Enfermedad Equina Africana/genética , Orbivirus/genética , Serogrupo , Sudáfrica/epidemiología , Enfermedades de los Caballos/epidemiología
18.
Viruses ; 14(10)2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36298748

RESUMEN

African horse sickness is a deadly and highly infectious disease of equids, caused by African horse sickness virus (AHSV). AHSV is one of the most economically important members of the Orbivirus genus. AHSV is transmitted by the biting midge, Culicoides, and therefore replicates in both insect and mammalian cell types. Structural protein VP7 is a highly conserved major core protein of orbiviruses. Unlike any other orbivirus VP7, AHSV VP7 is highly insoluble and forms flat hexagonal crystalline particles of unknown function in AHSV-infected cells and when expressed in mammalian or insect cells. To examine the role of AHSV VP7 in virus replication, a plasmid-based reverse genetics system was used to generate a recombinant AHSV that does not form crystalline particles. We characterised the role of VP7 crystalline particle formation in AHSV replication in vitro and found that soluble VP7 interacted with viral proteins VP2 and NS2 similarly to wild-type VP7 during infection. Interestingly, soluble VP7 was found to form uncharacteristic tubule-like structures in infected cells which were confirmed to be as a result of unique VP7-NS1 colocalisation. Furthermore, it was found that VP7 crystalline particles play a role in AHSV release and yield. This work provides insight into the role of VP7 aggregation in AHSV cellular pathogenesis and contributes toward the understanding of the possible effects of viral protein aggregation in other human virus-borne diseases.


Asunto(s)
Virus de la Enfermedad Equina Africana , Ceratopogonidae , Animales , Humanos , Virus de la Enfermedad Equina Africana/genética , Agregado de Proteínas , Replicación Viral , Proteínas del Núcleo Viral/metabolismo , Ceratopogonidae/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Mamíferos
19.
Mol Cell Probes ; 25(2-3): 87-93, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21315146

RESUMEN

A new real-time reverse transcription-polymerase chain reaction (RT-PCR) assay for a simple and rapid diagnosis of African Horse Sickness (AHS) was developed. Primers and FAM-labeled TaqMan-MGB probes specific for African horse sickness virus (AHSV) were selected from the consensus sequence of the segment 8 of all 9 serotypes of AHSV reference strains. For the determination of the analytical sensitivity, an in vitro transcript (AHS_ns2T7) of the target region was constructed and tested. Furthermore, the AHS_ns2T7 transcript was used either as positive control or as a standard for quantifying target copies. A commercial heterologous Armored RNA was used as an internal positive control (IPC) for both RNA isolation and RT-PCR steps. The qRT-PCR AHS_ns2 was able to amplify the target sequence up to 0.71 copies/reaction. Its flexibility allowed to amplify a wide dynamic range of RNA copies from 1.5 to 0.001fg. Within this range, the Ct values varied from 18 to 38 cycles with SD values always lower than 0.5 confirming their strong and constant linear correlation with the RNA target. Furthermore the newly designed duplex real-time RT-PCR proved to be strictly AHSV-specific as it did not amplify close related viruses.


Asunto(s)
Virus de la Enfermedad Equina Africana/genética , Enfermedad Equina Africana/virología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Enfermedad Equina Africana/diagnóstico , Virus de la Enfermedad Equina Africana/aislamiento & purificación , Animales , Secuencia de Bases , Cartilla de ADN/genética , Caballos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Sensibilidad y Especificidad , Homología de Secuencia de Ácido Nucleico
20.
Vaccine ; 39(23): 3161-3168, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33958224

RESUMEN

African horse sickness virus (AHSV) is an Orbivirus within the Reoviridae family, spread by Culicoides species of midges, which infects equids with high mortality, particularly in horses and has a considerable impact on the equine industry. In order to control the disease, we previously described Entry Competent Replication Abortive (ECRA) virus strains for each of the nine distinct AHSV serotypes and demonstrated their potential as vaccines, first in type I interferon receptor (IFNAR-/-) knockout mice, and then in ponies. In this report we have investigated whether or not a combination ECRA vaccine comprising nine vaccine strains as two different cocktails is as efficient in ponies and the duration of the immunity triggered by ECRA vaccines. In one study, a group of ponies were vaccinated with a cocktail of 4 vaccine strains, followed by a vaccination of the remaining 5 vaccine strains, mimicking the current live attenuated vaccine regimen. In the second study, ponies were vaccinated with a single ECRA-AHSV strain and monitored for 6 months. The first group of ponies developed neutralising antibody responses against all 9 serotypes, indicating that no cross-serotype interference occurred, while the second group developed robust neutralising antibody responses against the single serotype that were sustained at the same level throughout a 6-month study. The results support our previous data and further validate ECRA vaccines as a safe and efficacious replacement of current live vaccines.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Vacunas Virales , Enfermedad Equina Africana/prevención & control , Virus de la Enfermedad Equina Africana/genética , Animales , Caballos , Ratones , Serogrupo , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA