Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 162(2): 314-327, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26144317

RESUMEN

The large (L) proteins of non-segmented, negative-strand RNA viruses, a group that includes Ebola and rabies viruses, catalyze RNA-dependent RNA polymerization with viral ribonucleoprotein as template, a non-canonical sequence of capping and methylation reactions, and polyadenylation of viral messages. We have determined by electron cryomicroscopy the structure of the vesicular stomatitis virus (VSV) L protein. The density map, at a resolution of 3.8 Å, has led to an atomic model for nearly all of the 2109-residue polypeptide chain, which comprises three enzymatic domains (RNA-dependent RNA polymerase [RdRp], polyribonucleotidyl transferase [PRNTase], and methyltransferase) and two structural domains. The RdRp resembles the corresponding enzymatic regions of dsRNA virus polymerases and influenza virus polymerase. A loop from the PRNTase (capping) domain projects into the catalytic site of the RdRp, where it appears to have the role of a priming loop and to couple product elongation to large-scale conformational changes in L.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/ultraestructura , Virus de la Estomatitis Vesicular Indiana/química , Proteínas Virales/química , Proteínas Virales/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transcripción Genética
2.
Cell ; 162(2): 239-241, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186183

RESUMEN

Structures of L proteins from La Crosse orthobunyavirus and vesicular stomatitis virus reveal insights into RNA synthesis and distinctive mRNA capping mechanisms of segmented and non-segmented negative-sense single-strand RNA viruses.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/ultraestructura , Virus de la Estomatitis Vesicular Indiana/química , Proteínas Virales/química , Proteínas Virales/ultraestructura
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266951

RESUMEN

Interferons induce cell-intrinsic responses associated with resistance to viral infection. To overcome the suppressive action of interferons and their effectors, viruses have evolved diverse mechanisms. Using vesicular stomatitis virus (VSV), we report that the host cell N6-adenosine messenger RNA (mRNA) cap methylase, phosphorylated C-terminal domain interacting factor 1 (PCIF1), attenuates the antiviral response. We employed cell-based and in vitro biochemical assays to demonstrate that PCIF1 efficiently modifies VSV mRNA cap structures to m7Gpppm6Am and define the substrate requirements for this modification. Functional assays revealed that the PCIF1-dependent modification of VSV mRNA cap structures is inert with regard to mRNA stability, translation, and viral infectivity but attenuates the antiviral effects of the treatment of cells with interferon-ß. Cells lacking PCIF1 or expressing a catalytically inactive PCIF1 exhibit an augmented inhibition of viral replication and gene expression following interferon-ß treatment. We further demonstrate that the mRNA cap structures of rabies and measles viruses are also modified by PCIF1 to m7Gpppm6Am This work identifies a function of PCIF1 and cap-proximal m6Am in attenuation of the host response to VSV infection that likely extends to other viruses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interferón beta/inmunología , Proteínas Nucleares/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Interacciones Huésped-Patógeno , Humanos , Interferón beta/genética , Metilación , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Caperuzas de ARN/genética , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/química , ARN Viral/genética , Estomatitis Vesicular/genética , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/genética , Replicación Viral
4.
J Liposome Res ; 27(2): 83-89, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26981843

RESUMEN

Insect-derived cell lines are used extensively to produce recombinant proteins because they are capable of performing a range of post-translational modifications. Due to their significance in biotechnological applications, various methods have been developed to transfect them. In this study, we introduce a virosome constructed from vesicular stomatitis virus (VSV) as a new delivery system for sf9 cells. We labeled these VSV virosomes by fluorescent probe Rhodamine B chloride (R18). By fluorescence microscope observation and conducting a fusion assay, we confirmed the uptake of VSV virosomes via endocytosis by sf9 cells and their fusion with the endosomal membrane. Moreover, we incubated cationic VSV virosomes with a GFP-expressing bacmid and transfected sf9 cells, after 24 h some cells expressed GFP indicating the ability of VSV virosomes to deliver heterologous DNA to these cells. This is the first report of a virosome-based delivery system introduced for an insect cell line.


Asunto(s)
Técnicas de Transferencia de Gen , Virus de la Estomatitis Vesicular Indiana/química , Animales , Cationes/química , Células Cultivadas , Células Sf9 , Spodoptera , Virosomas/química
5.
J Virol ; 88(3): 1461-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24257610

RESUMEN

The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis.


Asunto(s)
Fosfoproteínas/química , Fosfoproteínas/metabolismo , ARN Viral/biosíntesis , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Viral/genética , Serina/genética , Serina/metabolismo , Tirosina/genética , Tirosina/metabolismo , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas Estructurales Virales/genética , Replicación Viral
6.
Proteins ; 80(11): 2601-13, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22806964

RESUMEN

Vesicular stomatitis virus glycoprotein G (VSV-G) belongs to a new class of viral fusion proteins (Class III). The structure of VSV-G has been solved in two different conformations and fusion is known to be triggered by low pH. To investigate Class III fusion mechanisms, molecular dynamics simulations were performed on the VSV-G prefusion structure in two different protonation states: at physiological pH (pH 7) and low pH present in the endosome (pH 5). Domain IV containing the fusion loops, which need to interact with the target membrane, exhibits the highest mobility. Energetic analyses revealed weakened interaction between Domain IV and the protein core at pH 5, which can be attributed to two pairs of structurally neighboring conserved and differentially protonated residues in the Domain IV-core interface. Energetic calculations also demonstrated that the interaction between the subunits in the core of the trimeric VSV-G is strengthened at pH 5, mainly due to newly formed interactions between the C-terminal loop of Domain II and the N-terminus of the adjacent subunit. A pair of interacting residues in this interface that is affected by differential protonation was shown to be the main effectors of this phenomenon. The results of this study thus enhance the mechanistic understanding of the effects of protonation changes in VSV-G.


Asunto(s)
Glicoproteínas/química , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/química , Proteínas Virales de Fusión/química , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Protones
7.
Anal Chem ; 84(3): 1677-86, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22242920

RESUMEN

Oncolytic viruses (OVs) are promising therapeutics that selectively replicate in and kill tumor cells. However, repetitive administration of OVs provokes the generation of neutralizing antibodies (nAbs) that can diminish their anticancer effects. In this work, we selected DNA aptamers against an oncolytic virus, vesicular stomatitis virus (VSV), to protect it from nAbs. A label-free electrochemical aptasensor was used to evaluate the degree of protection (DoP). The aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and a VSV-specific aptamer. Electrochemical impedance spectroscopy was employed to quantitate VSV in the range of 800-2200 PFU and a detection limit of 600 PFU. The aptasensor was also utilized for evaluating binding affinities between VSV and aptamer pools/clones. An electrochemical displacement assay was performed in the presence of nAbs and DoP values were calculated for several VSV-aptamer pools/clones. A parallel flow cytometric analysis confirmed the electrochemical results. Finally, four VSV-specific aptamer clones, ZMYK-20, ZMYK-22, ZMYK-23, and ZMYK-28, showed the highest protective properties with dissociation constants of 17, 8, 20, and 13 nM, respectively. Another four sequences, ZMYK-1, -21, -25, and -29, exhibited high affinities to VSV without protecting it from nAbs and can be further utilized in sandwich assays. Thus, ZMYK-22, -23, and -28 have the potential to allow efficient delivery of VSV through the bloodstream without compromising the patient's immune system.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Espectroscopía Dieléctrica , Virus de la Estomatitis Vesicular Indiana/química , Anticuerpos Neutralizantes/inmunología , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , ADN de Cadena Simple/química , Microelectrodos , Virus de la Estomatitis Vesicular Indiana/inmunología , Virus de la Estomatitis Vesicular Indiana/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(28): 11713-8, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19571006

RESUMEN

The negative-strand RNA viruses (NSRVs) are unique because their nucleocapsid, not the naked RNA, is the active template for transcription and replication. The viral polymerase of nonsegmented NSRVs contains a large polymerase catalytic subunit (L) and a nonenzymatic cofactor, the phosphoprotein (P). Insight into how P delivers the polymerase complex to the nucleocapsid has long been pursued by reverse genetics and biochemical approaches. Here, we present the X-ray crystal structure of the C-terminal domain of P of vesicular stomatitis virus, a prototypic nonsegmented NSRV, bound to nucleocapsid-like particles. P binds primarily to the C-terminal lobe of 2 adjacent N proteins within the nucleocapsid. This binding mode is exclusive to the nucleocapsid, not the nucleocapsid (N) protein in other existing forms. Localization of phosphorylation sites within P and their proximity to the RNA cavity give insight into how the L protein might be oriented to access the RNA template.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Nucleocápside/química , Fosfoproteínas/metabolismo , Virus de la Estomatitis Vesicular Indiana/química , Cristalografía por Rayos X , Unión Proteica , Conformación Proteica
9.
J Virol ; 84(7): 3707-10, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20089657

RESUMEN

The crystal structure of the dimerization domain of rabies virus phosphoprotein was determined. The monomer consists of two alpha-helices that make a helical hairpin held together mainly by hydrophobic interactions. The monomer has a hydrophilic and a hydrophobic face, and in the dimer two monomers pack together through their hydrophobic surfaces. This structure is very different from the dimerization domain of the vesicular stomatitis virus phosphoprotein and also from the tetramerization domain of the Sendai virus phosphoprotein, suggesting that oligomerization is conserved but not structure.


Asunto(s)
Fosfoproteínas/química , Multimerización de Proteína , Virus de la Rabia/química , Proteínas Virales/química , Dimerización , Estructura Secundaria de Proteína , Virus Sendai/química , Virus de la Estomatitis Vesicular Indiana/química
10.
Viruses ; 14(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062207

RESUMEN

The viral lifecycle is critically dependent upon host lipids. Enveloped viral entry requires fusion between viral and cellular membranes. Once an infection has occurred, viruses may rely on host lipids for replication and egress. Upon exit, enveloped viruses derive their lipid bilayer from host membranes during the budding process. Furthermore, host lipid metabolism and signaling are often hijacked to facilitate viral replication. We employed an untargeted HILIC-IM-MS lipidomics approach and identified host lipid species that were significantly altered during vesicular stomatitis virus (VSV) infection. Many glycerophospholipid and sphingolipid species were modified, and ontological enrichment analysis suggested that the alterations to the lipid profile change host membrane properties. Lysophosphatidylcholine (LPC), which can contribute to membrane curvature and serve as a signaling molecule, was depleted during infection, while several ceramide sphingolipids were augmented during infection. Ceramide and sphingomyelin lipids were also enriched in viral particles, indicating that sphingolipid metabolism is important during VSV infection.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Virus de la Estomatitis Vesicular Indiana/fisiología , Animales , Chlorocebus aethiops , Interacciones Microbiota-Huesped , Lisofosfatidilcolinas/metabolismo , Lípidos de la Membrana/metabolismo , Esfingolípidos/análisis , Esfingolípidos/metabolismo , Células Vero , Virus de la Estomatitis Vesicular Indiana/química , Virión/química , Virión/fisiología
11.
J Cell Biol ; 167(6): 997-1003, 2004 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-15611329

RESUMEN

What is the first membrane fusion step in the secretory pathway? In mammals, transport vesicles coated with coat complex (COP) II deliver secretory cargo to vesicular tubular clusters (VTCs) that ferry cargo from endoplasmic reticulum exit sites to the Golgi stack. However, the precise origin of VTCs and the membrane fusion step(s) involved have remained experimentally intractable. Here, we document in vitro direct tethering and SNARE-dependent fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers. The assembly did not require detectable Golgi membranes, preexisting VTCs, or COPI function. Therefore, COPII vesicles appear to contain all of the machinery to initiate VTC biogenesis via homotypic fusion. However, COPI function enhanced VTC assembly, and early VTCs acquired specific Golgi components by heterotypic fusion with Golgi-derived COPI vesicles.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Aparato de Golgi/metabolismo , Fusión de Membrana/fisiología , Glicoproteínas de Membrana/fisiología , Virus de la Estomatitis Vesicular Indiana/fisiología , Proteínas del Envoltorio Viral/fisiología , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/química , Ratas , Proteínas SNARE , Proteínas de Transporte Vesicular/metabolismo , Virus de la Estomatitis Vesicular Indiana/química , Proteínas del Envoltorio Viral/química
12.
Science ; 266(5184): 456-8, 1994 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-7939687

RESUMEN

The endoplasmic reticulum (ER) contains molecular chaperones that facilitate the folding of proteins in mammalian cells. Biosynthetic labeling was used to study the interactions of two chaperones, BiP and calnexin, with vesicular stomatitis virus (VSV) glycoprotein (G protein). Coimmunoprecipitation of G protein with the chaperones showed that BiP bound maximally to early folding intermediates of G protein, whereas calnexin bound after a short lag to more folded molecules. Castanospermine, an inhibitor of ER glucosidases, blocked the binding of proteins to calnexin and inhibited G protein folding. Interaction with calnexin was necessary for efficient folding of G protein and for retention of partially folded forms.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Glicoproteínas/química , Glicoproteínas de Membrana , Chaperonas Moleculares , Virus de la Estomatitis Vesicular Indiana/química , Proteínas del Envoltorio Viral/química , Animales , Células CHO , Proteínas de Unión al Calcio/química , Calnexina , Proteínas Portadoras/química , Membrana Celular/metabolismo , Cricetinae , Citoplasma/metabolismo , Chaperón BiP del Retículo Endoplásmico , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Indolizinas/farmacología , Pliegue de Proteína , Virus de la Estomatitis Vesicular Indiana/fisiología , Proteínas del Envoltorio Viral/metabolismo
13.
Nat Commun ; 9(1): 1029, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531262

RESUMEN

Vesicular stomatitis virus (VSV) is an oncolytic rhabdovirus and its glycoprotein G is widely used to pseudotype other viruses for gene therapy. Low-density lipoprotein receptor (LDL-R) serves as a major entry receptor for VSV. Here we report two crystal structures of VSV G in complex with two distinct cysteine-rich domains (CR2 and CR3) of LDL-R, showing that their binding sites on G are identical. We identify two basic residues on G, which are essential for its interaction with CR2 and CR3. Mutating these residues abolishes VSV infectivity even though VSV can use alternative receptors, indicating that all VSV receptors are members of the LDL-R family. Collectively, our data suggest that VSV G has specifically evolved to interact with receptor CR domains. These structural insights into the interaction between VSV G and host cell receptors provide a basis for the design of recombinant viruses with an altered tropism.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores de LDL/química , Receptores de LDL/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Estomatitis Vesicular/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Familia de Multigenes , Unión Proteica , Dominios Proteicos , Receptores de LDL/genética , Receptores Virales/genética , Estomatitis Vesicular/genética , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
14.
Curr Biol ; 8(7): 409-12, 1998 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-9545202

RESUMEN

Whether T-cell receptors (TCRs) recognize antigenic peptides bound to major histocompatability complex (MHC) molecules through common or distinct docking modes is currently uncertain. We report the crystal structure of a complex between the murine N15 TCR [1-4] and its peptide-MHC ligand, an octapeptide fragment representing amino acids 52-59 of the vesicular stomatitis virus nuclear capsid protein (VSV8) bound to the murine H-2Kb class I MHC molecule. Comparison of the structure of the N15 TCR-VSV8-H-2Kb complex with the murine 2C TCR-dEV8-H-2Kb [5] and the human A6 TCR-Tax-HLA-A2 [6] complexes revealed a common docking mode, regardless of TCR specificity or species origin, in which the TCR variable Valpha domain overlies the MHC alpha2 helix and the Vbeta domain overlies the MHC alpha1 helix. As a consequence, the complementary determining regions CDR1 and CDR3 of the TCR Valpha and Vbeta domains make the major contacts with the peptide, while the CDR2 loops interact primarily with the MHC. Nonetheless, in terms of the details of the relative orientation and disposition of binding, there is substantial variation in TCR parameters, which we term twist, tilt and shift, and which define the variation of the V module of the TCR relative to the MHC antigen-binding groove.


Asunto(s)
Antígenos de Histocompatibilidad/química , Péptidos/química , Receptores de Antígenos de Linfocitos T alfa-beta/química , Animales , Sitios de Unión , Cápside/química , Cápside/metabolismo , Cristalografía por Rayos X , Productos del Gen tax/química , Productos del Gen tax/metabolismo , Antígenos H-2/química , Antígenos H-2/metabolismo , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Humanos , Técnicas In Vitro , Sustancias Macromoleculares , Ratones , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/metabolismo , Péptidos/metabolismo , Conformación Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/metabolismo
15.
Mol Biol Cell ; 7(6): 961-74, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8817001

RESUMEN

p200 is a cytoplasmic protein that associates with vesicles budding from the trans-golgi network (TGN). The protein was identified by a monoclonal antibody AD7. We have used this antibody to analyze whether p200 functions in exocytic transport from the TGN to the apical or basolateral plasma membrane in Madin-Darby canine kidney cells. We found that transport of the viral marker proteins, influenza hemagglutinin (HA) to the apical surface or vesicular stomatitis virus glycoprotein (VSV G) to the basolateral surface in streptolysin O-permeabilized cells was not affected when p200 was depleted from both the membranes and the cytosol. When vesicles isolated from perforated cells were analyzed by equilibrium density gradient centrifugation, the p200 immunoreactive membranes did not comigrate with either the apical vesicle marker HA or the basolateral vesicle marker VSV G. Immunoelectron microscopy of perforated and double-labeled cells showed that the p200 positive vesicular profiles were not labeled by antibodies to HA or VSV G when the viral proteins were accumulated in the TGN. Furthermore, the p200-decorated vesicles were more electron dense than those labeled with the viral antibodies. Together, these results suggest that p200 does not function in the transport pathways that carry HA from the TGN to the apical surface or VSV G from the TGN to the basolateral surface.


Asunto(s)
Aparato de Golgi/química , Aparato de Golgi/fisiología , Animales , Transporte Biológico , Línea Celular , Cricetinae , Citosol/química , Perros , Proteínas de Unión al GTP/fisiología , Aparato de Golgi/ultraestructura , Hemaglutininas , Membranas Intracelulares/química , Membranas Intracelulares/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Virus de la Estomatitis Vesicular Indiana/química , Proteínas del Envoltorio Viral/metabolismo
16.
FEBS J ; 273(3): 513-22, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16420475

RESUMEN

The molecular chaperone Grp94 (gp96) of the endoplasmic reticulum (ER) lumen plays an essential role in the structural maturation and/or secretion of proteins destined for transport to the cell surface. Its proposed role in binding and transferring peptides for immune recognition is, however, controversial. Using SPR spectroscopy, we studied the interaction of native glycosylated Grp94 at neutral pH and 25 and 37 degrees C with the viral immunogenic octapeptide RGYVYQGL (VSV8), derived from vesicular stomatitis virus nucleoprotein (52-59). The peptide binds reversibly with low affinity ([A]0.5 approximately 640 microM) and a hyperbolic binding isotherm, and the binding is partially inhibited by ATP and Ca2+ at concentrations that are present in the ER lumen, and the effects are explained by conformational changes in the native chaperone induced by these ligands. Our data present experimental support for the recent proposal that, under native conditions, VSV8 binds to Grp94 by an adsorptive, rather than a bioselective, mechanism, and thus further challenge the proposed in vivo peptide acceptor-donor function of the chaperone in the context of antigen-presenting cell activation.


Asunto(s)
Adenosina Trifosfato/química , Calcio/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de la Membrana/química , Nucleoproteínas/química , Fragmentos de Péptidos/química , Adenosina-5'-(N-etilcarboxamida)/química , Animales , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Unión Proteica , Ratas , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie/métodos , Virus de la Estomatitis Vesicular Indiana/química
17.
Biochim Biophys Acta ; 1415(1): 101-13, 1998 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-9858700

RESUMEN

The interaction of a 19 amino acid vesicular stomatitis virus G protein fragment (GTWLNPGFPPQSCGYATVT) with phosphatidylserine-containing model membranes was investigated using solution-phase 1d and 2d 1H NMR spectroscopy and intrinsic tryptophan fluorescence. Results of these studies show that this peptide interacts with model membranes containing negatively charged phospholipids. The interaction is modulated by both ionic and hydrophobic factors and appears to be dependent on the fluidity and lipid packing of the target bilayer. The data further suggest the existence of two isomeric forms of this peptide, which react differentially with model membranes. Upon binding, 2d 1H NOESY and tryptophan fluorescence data indicate penetration of the tryptophan residue into the bilayer. A model is proposed for the interaction of the peptide with model membranes, consistent with the experimental findings.


Asunto(s)
Glicoproteínas de Membrana , Fragmentos de Péptidos/química , Fosfatidilserinas/química , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación Proteica , Espectrometría de Fluorescencia , Virus de la Estomatitis Vesicular Indiana/química
18.
Biochim Biophys Acta ; 1577(2): 337-53, 2002 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-12213662

RESUMEN

The nonsegmented negative strand (NNS) RNA viruses include some of the mosr problematic human, animal and plant pathogens extant: for example, rabies virus, Ebola virus, respiratory syncytial virus, the parainfluenza viruses, measles and infectious hemapoietic necrosis virus. The key feature of transcriptional control in the NNS RNA viruses is polymerase entry at a single 3' proximal site followed by obligatory sequential transcription of the linear array of genes. The levels of gene expression are primarily regulated by their position on the genome. The promoter proximal gene is transcribed in greatest abundance and each successive downstream gene is synthesized in progressively lower amounts due to attenuation of transcription at each successive gene junction. In addition, NNS RNA virus gene expression is regulated by cis-acting sequences that reside at the beginning and end of each gene and the intergenic junctions. Using vesicular stomatitis virus (VSV), the prototypic NNS, many of these control elements have been identified.The signals for transcription initiation and 5' end modification and for 3' end polyadenylation and termination have been elucidated. The sequences that determine the ability of the polymerase to slip on the template to generate polyadenylate have been identified and polyadenylation has been shown to be template dependent and integral to the termination process. Transcriptional termination is a key element in control of gene expression of the negative strand RNA viruses and a means by which expression of individual genes may be silenced or regulated within the framework of a single transcriptional promoter. In addition, the fundamental question of the site of entry of the polymerase during transcription has been reexamined and our understanding of the process altered and updated. The ability to engineer changes into infectious viruses has confirmed the action of these elements and as a consequence, it has been shown that transcriptional control is key to controlling the outcome of a viral infection. Finally, the principles of transcriptional regulation have been utilized to develop a new paradigm for systematic attenuation of virulence to develop live attenuated viral vaccines.


Asunto(s)
ARN Polimerasa Dependiente del ARN/metabolismo , Transcripción Genética , Virus de la Estomatitis Vesicular Indiana/genética , Secuencia de Bases , Regulación Viral de la Expresión Génica , Genes Virales , Datos de Secuencia Molecular , Terminación de la Cadena Péptídica Traduccional , Regiones Promotoras Genéticas , ARN/biosíntesis , ARN Polimerasa Dependiente del ARN/genética , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/enzimología , Vacunas Virales
19.
J Mol Biol ; 274(5): 816-25, 1997 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-9405160

RESUMEN

The matrix protein of vesicular stomatitis virus (VSV) plays a pivotal role in viral assembly. We previously demonstrated the ability of M protein to self-associate at low salt concentrations. Now, we show the ability of M protein to polymerize in the presence of ZnCl2 in a nucleation-dependent manner. Analysis of kinetics revealed that the nuclei are probably made of three or four molecules of M. These results are consistent with the idea that in vitro self association of M protein is not due to amorphous aggregation but rather reflects an intrinsic ability of M to polymerize. Using attenuated total reflectance Fourier transform infrared spectroscopy, we showed that M polymerization is associated with an increase in the beta-sheet content of the protein. We propose a model explaining both the apparent M protein solubility in infected cells and how M polymerization could promote viral assembly. Data available for other negative strand viruses suggest that M polymerization may be the general basis of viral assembly.


Asunto(s)
Conformación Proteica , Virus de la Estomatitis Vesicular Indiana/química , Proteínas de la Matriz Viral/química , Cloruros , Cinética , Luz , Concentración Osmolar , Polímeros , Estructura Secundaria de Proteína , Dispersión de Radiación , Cloruro de Sodio , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Virus de la Estomatitis Vesicular Indiana/fisiología , Ensamble de Virus/fisiología , Compuestos de Zinc
20.
Biosens Bioelectron ; 67: 280-6, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25190090

RESUMEN

There is a widespread interest in the development of aptamer-based affinity chromatographic methods for purification of biomolecules. Regardless of the many advantages exhibited by aptamers when compared to other recognition elements, the lack of an efficient regeneration technique that can be generalized to all targets has encumbered further integration of aptamers into affinity-based purification methods. Here we offer switchable aptamers (SwAps) that have been developed to solve this problem and move aptamer-based chromatography forward. SwAps are controlled-affinity aptamers, which have been employed here to purify vesicular stomatitis virus (VSV) as a model case, however this technique can be extended to all biologically significant molecules. VSV is one oncolytic virus out of an arsenal of potential candidates shown to provide selective destruction of cancer cells both in vitro and in vivo. These SwAps were developed in the presence of Ca(2+) and Mg(2+) ions where they cannot bind to their target VSV in absence of these cations. Upon addition of EDTA and EGTA, the divalent cations were sequestered from the stabilized aptameric structure causing a conformational change and subsequently release of the virus. Both flow cytometry and electrochemical impedance spectroscopy were employed to estimate the binding affinities between the selected SwAps and VSV and to determine the coefficient of switching (CoS) upon elution. Among fifteen sequenced SwAps, four have exhibited high affinity to VSV and ability to switch upon elution and thus were further integrated into streptavidin-coated magnetic beads for purification of VSV.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Técnica SELEX de Producción de Aptámeros , Virus de la Estomatitis Vesicular Indiana/aislamiento & purificación , Espectroscopía Dieléctrica , Humanos , Oligonucleótidos/química , Estreptavidina/química , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA