Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(13): e0053122, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35727032

RESUMEN

Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.


Asunto(s)
Vectores Artrópodos , Virus de la Lengua Azul , Lengua Azul , Ceratopogonidae , Enfermedades de las Ovejas , Animales , Vectores Artrópodos/virología , Lengua Azul/transmisión , Lengua Azul/virología , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Ceratopogonidae/virología , Ciervos , Fenotipo , Virus Reordenados/metabolismo , Ovinos , Enfermedades de las Ovejas/transmisión , Enfermedades de las Ovejas/virología , Replicación Viral
2.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30518645

RESUMEN

Bluetongue virus (BTV), in the family Reoviridae, is an insect-borne, double-capsid virus causing hemorrhagic disease in livestock around the world. Here, we elucidate how outer capsid proteins VP2 and VP5 coordinate cell entry of BTV. To identify key functional residues, we used atomic-level structural data to guide mutagenesis of VP2 and VP5 and a series of biological and biochemical approaches, including site-directed mutagenesis, reverse genetics-based virus recovery, expression and characterization of individual recombinant mutant proteins, and various in vitro and in vivo assays. We demonstrate the dynamic nature of the conformational change process, revealing that a unique zinc finger (CCCH) in VP2 acts as the major low pH sensor, coordinating VP2 detachment, subsequently allowing VP5 to sense low pH via specific histidine residues at key positions. We show that single substitution of only certain histidine residues has a lethal effect, indicating that the location of histidine in VP5 is critical to inducing changes in VP5 conformation that facilitates membrane penetration. Further, we show that the VP5 anchoring domain alone recapitulates sensing of low pH. Our data reveal a novel, multiconformational process that overcomes entry barriers faced by this multicapsid nonenveloped virus.IMPORTANCE Virus entry into a susceptible cell is the first step of infection and a significant point at which infection can be prevented. To enter effectively, viruses must sense the cellular environment and, when appropriate, initiate a series of changes that eventually jettison the protective shell and deposit virus genes into the cytoplasm. Many viruses sense pH, but how this happens and the events that follow are often poorly understood. Here, we address this question for a large multilayered bluetongue virus. We show key residues in outer capsid proteins, a pH-sensing histidine of a zinc finger within the receptor-binding VP2 protein, and certain histidine residues in the membrane-penetrating VP5 protein that detect cellular pH, leading to irreversible changes and propel the virus through the cell membrane. Our data reveal a novel mechanism of cell entry for a nonenveloped virus and highlight mechanisms which may also be used by other viruses.


Asunto(s)
Virus de la Lengua Azul/genética , Virus de la Lengua Azul/metabolismo , Interacciones Microbiota-Huesped/fisiología , Virus de la Lengua Azul/patogenicidad , Proteínas de la Cápside/genética , Línea Celular , Membrana Celular/metabolismo , Virus ADN/genética , Concentración de Iones de Hidrógeno , Unión Proteica/fisiología , Reoviridae/genética , Virión/genética , Internalización del Virus
3.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167915

RESUMEN

Bluetongue virus (BTV) is an arbovirus transmitted by blood-feeding midges to a wide range of wild and domestic ruminants. In this report, we showed that BTV, through its nonstructural protein NS3 (BTV-NS3), is able to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, as assessed by phosphorylation levels of ERK1/2 and the translation initiation factor eukaryotic translation initiation factor 4E (eIF4E). By combining immunoprecipitation of BTV-NS3 and mass spectrometry analysis from both BTV-infected and NS3-transfected cells, we identified the serine/threonine-protein kinase B-Raf (BRAF), a crucial player in the MAPK/ERK pathway, as a new cellular interactor of BTV-NS3. BRAF silencing led to a significant decrease in the MAPK/ERK activation by BTV, supporting a model wherein BTV-NS3 interacts with BRAF to activate this signaling cascade. This positive regulation acts independently of the role of BTV-NS3 in counteracting the induction of the alpha/beta interferon response. Furthermore, the intrinsic ability of BTV-NS3 to bind BRAF and activate the MAPK/ERK pathway is conserved throughout multiple serotypes/strains but appears to be specific to BTV compared to other members of Orbivirus genus. Inhibition of MAPK/ERK pathway with U0126 reduced viral titers, suggesting that BTV manipulates this pathway for its own replication. Altogether, our data provide molecular mechanisms that unravel a new essential function of NS3 during BTV infection.IMPORTANCE Bluetongue virus (BTV) is responsible of the arthropod-borne disease bluetongue (BT) transmitted to ruminants by blood-feeding midges. In this report, we found that BTV, through its nonstructural protein NS3 (BTV-NS3), interacts with BRAF, a key component of the MAPK/ERK pathway. In response to growth factors, this pathway promotes cell survival and increases protein translation. We showed that BTV-NS3 enhances the MAPK/ERK pathway, and this activation is BRAF dependent. Treatment of MAPK/ERK pathway with the pharmacologic inhibitor U0126 impairs viral replication, suggesting that BTV manipulates this pathway for its own benefit. Our results illustrate, at the molecular level, how a single virulence factor has evolved to target a cellular function to increase its viral replication.


Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/metabolismo , Lengua Azul/virología , Interacciones Huésped-Patógeno , Sistema de Señalización de MAP Quinasas , Proteínas no Estructurales Virales/metabolismo , Animales , Virus de la Lengua Azul/patogenicidad , Línea Celular , Proteínas de Unión al ADN , Humanos , Interferones/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factores de Transcripción , Factores de Virulencia , Replicación Viral
4.
J Recept Signal Transduct Res ; 40(5): 426-435, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32249640

RESUMEN

Outstanding increase of oral absorption, bioavailability, and antiviral efficacy of phosphorylated nucleosides and basic antiviral influence of abacavir is the central idea for the development of new series of phosphorylated abacavir (ABC) derivatives. The designed compounds were primarily screened for antiviral nature against HN protein of NDV and VP7 protein of BTV using the molecular environment approach. Out of all the designed compounds, the compounds which are having higher binding energies against these two viral strains were prompted for the synthesis of the target compounds (5A-K). Among the synthesized title compounds (5A-K), the compounds which have exhibited higher dock scores akin to the rest of the compounds were then selected and screened for the antiviral activity against NDV and BTV infected embryonated eggs and BHK 21 cell lines through the in ovo and in vitro approaches. The results revealed that all the designed compounds have formed higher binding energies against both the targets. Among all, the compounds which are selected based on their dock scores such as 5A, 5F, 5G, 5H, 5I, and 5K against NDV and 5J, 5E, 5I, 5C, 5A, and 5K against BTV have shown significant antiviral activity against HN protein of NDV, VP7 protein of Bluetongue virus in both NDV- and BTV-treated embryonated eggs and BHK 21 cell lines. Hence, it is concluded that, the best lead compounds will stand as the potential antiviral agents and prompted them as virtuous therapeutics against NDV and BTV in future.


Asunto(s)
Lengua Azul/tratamiento farmacológico , Didesoxinucleósidos/farmacología , Proteína HN/efectos de los fármacos , Proteínas del Núcleo Viral/antagonistas & inhibidores , Animales , Enfermedades de las Aves/tratamiento farmacológico , Enfermedades de las Aves/genética , Enfermedades de las Aves/virología , Lengua Azul/genética , Lengua Azul/virología , Virus de la Lengua Azul/efectos de los fármacos , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Simulación por Computador , Didesoxinucleósidos/química , Enfermedad de Newcastle/tratamiento farmacológico , Enfermedad de Newcastle/genética , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Fosforilación , Ovinos/virología , Enfermedades de las Ovejas/tratamiento farmacológico , Enfermedades de las Ovejas/genética , Relación Estructura-Actividad , Proteínas del Núcleo Viral/genética
5.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023235

RESUMEN

Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.


Asunto(s)
Virus de la Enfermedad Equina Africana/efectos de los fármacos , Ácido Aurintricarboxílico/farmacocinética , Virus de la Lengua Azul/efectos de los fármacos , Virosis/tratamiento farmacológico , Enfermedad Equina Africana/tratamiento farmacológico , Enfermedad Equina Africana/genética , Enfermedad Equina Africana/virología , Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/patogenicidad , Animales , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Ceratopogonidae/patogenicidad , Ceratopogonidae/virología , Caballos/virología , Ovinos/virología , Virosis/genética , Virosis/virología , Replicación Viral/efectos de los fármacos
6.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021901

RESUMEN

Arboviruses can cause a variety of clinical signs, including febrile illness, arthritis, encephalitis, and hemorrhagic fever. The recent Zika epidemic highlighted the possibility that arboviruses may also negatively affect the male reproductive tract. In this study, we focused on bluetongue virus (BTV), the causative agent of bluetongue and one of the major arboviruses of ruminants. We show that rams that recovered from bluetongue displayed signs of testicular degeneration and azoospermia up to 100 days after the initial infection. Importantly, testicular degeneration was induced in rams experimentally infected with either a high (BTV-1IT2006)- or a low (BTV-1IT2013)-virulence strain of BTV. Rams infected with the low-virulence BTV strain displayed testicular lesions in the absence of other major clinical signs. Testicular lesions in BTV-infected rams were due to viral replication in the endothelial cells of the peritubular areas of the testes, resulting in stimulation of a type I interferon response, reduction of testosterone biosynthesis by Leydig cells and destruction of Sertoli cells and the blood-testis barrier in more severe cases. Hence, BTV induces testicular degeneration and disruption of spermatogenesis by replicating solely in the endothelial cells of the peritubular areas unlike other gonadotropic viruses. This study shows that a naturally occurring arboviral disease can cause testicular degeneration and affect male fertility at least temporarily.IMPORTANCE During the recent Zika epidemic, it has become apparent that arboviruses could potentially cause reproductive health problems in male patients. Little is known regarding the effects that arboviruses have on the male reproductive tract. Here, we studied bluetongue virus (BTV), an arbovirus of ruminants, and its effects on the testes of rams. We show that BTV was able to induce testicular degeneration in naturally and experimentally infected rams. Testicular degeneration was caused by BTV replication in the endothelial cells of the peritubular area surrounding the seminiferous tubules (the functional unit of the testes) and was associated with a localized type I interferon response, destruction of the cells supporting the developing germinal cells (Sertoli cells), and reduction of testosterone synthesis. As a result of BTV infection, rams became azoospermic. This study highlights that problems in the male reproductive tract caused by arboviruses could be more common than previously thought.


Asunto(s)
Virus de la Lengua Azul/patogenicidad , Lengua Azul/complicaciones , Endotelio Vascular/patología , Infertilidad Masculina/etiología , Enfermedades de las Ovejas/etiología , Espermatogénesis , Testículo/patología , Animales , Lengua Azul/patología , Lengua Azul/virología , Endotelio Vascular/metabolismo , Endotelio Vascular/virología , Infertilidad Masculina/patología , Masculino , Ovinos , Enfermedades de las Ovejas/patología , Testículo/metabolismo , Testículo/virología , Testosterona/análisis , Virulencia , Replicación Viral
7.
BMC Microbiol ; 19(1): 121, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182015

RESUMEN

BACKGROUND: Bluetongue virus (BTV) causes a disease among wild and domesticated ruminants which is not contagious, but which is transmitted by biting midges of the Culicoides species. BTV can induce an intense cytopathic effect (CPE) in mammalian cells after infection, although Culicoides- or mosquito-derived cell cultures cause non-lytic infection with BTV without CPE. However, little is known about the transcriptome changes in Aedes albopictus cells infected with BTV. METHODS: Transcriptome sequencing was used to identify the expression pattern of mRNA transcripts in A. albopictus cells infected with BTV, given the absence of the Culicoides genome sequence. Bioinformatics analyses were performed to examine the biological functions of the differentially expressed genes. Subsequently, quantitative reverse transcription-polymerase chain reaction was utilized to validate the sequencing data. RESULTS: In total, 51,850,205 raw reads were generated from the BTV infection group and 51,852,293 from the control group. A total of 5769 unigenes were common to both groups; only 779 unigenes existed exclusively in the infection group and 607 in the control group. In total, 380 differentially expressed genes were identified, 362 of which were up-regulated and 18 of which were down-regulated. Bioinformatics analyses revealed that the differentially expressed genes mainly participated in endocytosis, FoxO, MAPK, dorso-ventral axis formation, insulin resistance, Hippo, and JAK-STAT signaling pathways. CONCLUSION: This study represents the first attempt to investigate transcriptome-wide dysregulation in A. albopictus cells infected with BTV. The understanding of BTV pathogenesis and virus-vector interaction will be improved by global transcriptome profiling.


Asunto(s)
Aedes/genética , Virus de la Lengua Azul/patogenicidad , Perfilación de la Expresión Génica/veterinaria , Redes Reguladoras de Genes , Aedes/virología , Animales , Estudios de Casos y Controles , Línea Celular , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Análisis de Secuencia de ARN/veterinaria
8.
PLoS Comput Biol ; 13(4): e1005470, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28369082

RESUMEN

The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not.


Asunto(s)
Virus de la Lengua Azul/patogenicidad , Enfermedades de los Bovinos/transmisión , Interacciones Huésped-Patógeno , Insectos Vectores , Ganado , Modelos Teóricos , Virus ARN/patogenicidad , Enfermedades de las Ovejas/transmisión , Animales , Teorema de Bayes , Bovinos , Enfermedades de los Bovinos/virología , Brotes de Enfermedades , Ovinos , Enfermedades de las Ovejas/virología
9.
J Virol ; 90(11): 5427-39, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27009961

RESUMEN

UNLABELLED: Bluetongue virus (BTV) is the causative agent of bluetongue, a major infectious disease of ruminants with serious consequences to both animal health and the economy. The clinical outcome of BTV infection is highly variable and dependent on a variety of factors related to both the virus and the host. In this study, we show that the BTV nonstructural protein NS4 favors viral replication in sheep, the animal species most affected by bluetongue. In addition, NS4 confers a replication advantage on the virus in interferon (IFN)-competent primary sheep endothelial cells and immortalized cell lines. We determined that in cells infected with an NS4 deletion mutant (BTV8ΔNS4), there is increased synthesis of type I IFN compared to cells infected with wild-type BTV-8. In addition, using RNA sequencing (RNA-seq), we show that NS4 modulates the host IFN response and downregulates mRNA levels of type I IFN and interferon-stimulated genes. Moreover, using reporter assays and protein synthesis assays, we show that NS4 downregulates the activities of a variety of promoters, such as the cytomegalovirus immediate-early promoter, the IFN-ß promoter, and a promoter containing interferon-stimulated response elements (ISRE). We also show that the NS4 inhibitory activity on gene expression is related to its nucleolar localization. Furthermore, NS4 does not affect mRNA splicing or cellular translation. The data obtained in this study strongly suggest that BTV NS4 is an IFN antagonist and a key determinant of viral virulence. IMPORTANCE: Bluetongue is one of the main infectious diseases of ruminants and is caused by bluetongue virus (BTV), an arthropod-borne virus transmitted from infected to susceptible animals by Culicoides biting midges. Bluetongue has a variable clinical outcome that can be related to both virus and host factors. It is therefore critical to understand the interplay between BTV and the host immune responses. In this study, we show that a nonstructural protein of BTV (NS4) is critical to counteract the innate immune response of the host. Infection of cells with a BTV mutant lacking NS4 results in increased synthesis of IFN-ß and upregulation of interferon-stimulated genes. In addition, we show that NS4 is a virulence factor for BTV by favoring viral replication in sheep, the animal species most susceptible to bluetongue.


Asunto(s)
Virus de la Lengua Azul/química , Virus de la Lengua Azul/patogenicidad , Lengua Azul/virología , Interferón Tipo I/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo , Animales , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/inmunología , Línea Celular , Células Endoteliales/virología , Inmunidad Innata , Interferón Tipo I/biosíntesis , Interferón Tipo I/genética , Interferón beta/genética , Regiones Promotoras Genéticas , Eliminación de Secuencia , Ovinos , Virulencia , Factores de Virulencia/química , Factores de Virulencia/aislamiento & purificación , Replicación Viral
10.
PLoS Pathog ; 11(12): e1005321, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26646790

RESUMEN

Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.


Asunto(s)
Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Genoma Viral , ARN Viral/genética , Infecciones por Reoviridae/genética , Replicación Viral/genética , Animales , Secuencia de Bases , Cricetinae , Ensayo de Cambio de Movilidad Electroforética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Transcripción Genética , Ensamble de Virus/genética
11.
PLoS Comput Biol ; 12(4): e1004837, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27128163

RESUMEN

Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.


Asunto(s)
Enfermedades Transmisibles/transmisión , Transmisión de Enfermedad Infecciosa/prevención & control , Insectos Vectores/crecimiento & desarrollo , Modelos Biológicos , Animales , Número Básico de Reproducción , Lengua Azul/epidemiología , Lengua Azul/prevención & control , Lengua Azul/transmisión , Virus de la Lengua Azul/patogenicidad , Ceratopogonidae/crecimiento & desarrollo , Ceratopogonidae/virología , Enfermedades Transmisibles/epidemiología , Biología Computacional , Humanos , Mordeduras y Picaduras de Insectos/virología , Insectos Vectores/virología , Estadios del Ciclo de Vida
12.
J Virol ; 89(10): 5238-49, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25822026

RESUMEN

UNLABELLED: Bluetongue virus (BTV) causes bluetongue, a major hemorrhagic disease of ruminants. In order to investigate the molecular determinants of BTV virulence, we used a BTV8 strain minimally passaged in tissue culture (termed BTV8L in this study) and a derivative strain passaged extensively in tissue culture (BTV8H) in in vitro and in vivo studies. BTV8L was pathogenic in both IFNAR(-/-) mice and in sheep, while BTV8H was attenuated in both species. To identify genetic changes which led to BTV8H attenuation, we generated 34 reassortants between BTV8L and BTV8H. We found that partial attenuation of BTV8L in IFNAR(-/-) mice was achieved by simply replacing genomic segment 2 (Seg2, encoding VP2) or Seg10 (encoding NS3) with the BTV8H homologous segments. Fully attenuated viruses required at least two genome segments from BTV8H, including Seg2 with either Seg1 (encoding VP1), Seg6 (encoding VP6 and NS4), or Seg10 (encoding NS3). Conversely, full reversion of virulence of BTV8H required at least five genomic segments of BTV8L. We also demonstrated that BTV8H acquired an increased affinity for glycosaminoglycan receptors during passaging in cell culture due to mutations in its VP2 protein. Replication of BTV8H was relatively poor in interferon (IFN)-competent primary ovine endothelial cells compared to replication of BTV8L, and this phenotype was determined by several viral genomic segments, including Seg4 and Seg9. This study demonstrated that multiple viral proteins contribute to BTV8 virulence. VP2 and NS3 are primary determinants of BTV pathogenesis, but VP1, VP5, VP4, VP6, and VP7 also contribute to virulence. IMPORTANCE: Bluetongue is one of the major infectious diseases of ruminants, and it is listed as a notifiable disease by the World Organization for Animal Health (OIE). The clinical outcome of BTV infection varies considerably and depends on environmental and host- and virus-specific factors. Over the years, BTV serotypes/strains with various degrees of virulence (including nonpathogenic strains) have been described in different geographical locations. However, no data are available to correlate the BTV genotype to virulence. This study shows that BTV virulence is determined by different viral genomic segments. The data obtained will help to characterize thoroughly the pathogenesis of bluetongue. The possibility to determine the pathogenicity of virus isolates on the basis of their genome sequences will help in the design of control strategies that fit the risk posed by new emerging BTV strains.


Asunto(s)
Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Lengua Azul/virología , Animales , Virus de la Lengua Azul/clasificación , Línea Celular , Femenino , Genoma Viral , Interferones/farmacología , Masculino , Ratones , Ratones Noqueados , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Serogrupo , Ovinos , Proteínas Virales/genética , Virulencia/genética , Cultivo de Virus , Replicación Viral/genética
13.
Arch Virol ; 161(10): 2807-11, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27379971

RESUMEN

Bluetongue virus (BTV) has been found to trigger autophagy to favor its replication, but the underlying mechanisms have not been clarified. Here, we show that cellular energy metabolism is involved in BTV-induced autophagy. Cellular ATP synthesis was impaired by BTV1 infection, causing metabolic stress, which was responsible for activation of autophagy, since the conversion of LC3 and aggregation of GFP-LC3 (autophagy markers) were suppressed when infection-caused energy depletion was reversed via MP (metabolic substrate) treatment. The reduced virus yields with MP further supported this view. Overall, our findings suggest that BTV1-induced disruption of cellular energy metabolism contributes to autophagy, and this provides new insights into BTV-host interactions.


Asunto(s)
Autofagia , Virus de la Lengua Azul/fisiología , Metabolismo Energético , Replicación Viral , Animales , Virus de la Lengua Azul/patogenicidad , Células Cultivadas , Cricetinae
14.
Biochem Biophys Res Commun ; 466(3): 406-12, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26363458

RESUMEN

Bluetongue virus (BTV) is an important pathogen of wild and domestic ruminants. We have previously reported that BTV1 infection induced autophagy for its own benefit, but how this occurs remains unclear. Here, the classical autophagy features including autophagsomes formation, GFP-LC3 dots and LC3-II conversation were shown in BTV1-infected cells, we also found the endoplasmic reticulum (ER) stress was triggered by BTV1 infection, which was demonstrated by the increased transcription level of the ER stress marker GRP78 and the expanded morphology of ER. During ER stress, PERK and eIF2α phosphorylation increased along with BTV1 infection, consistent with the elevated LC3 level, indicating that the PERK pathway of the unfolded protein response (UPR) was activated. In addition, both the blockage of PERK by GSK2656157 or knockdown of eIF2α by siRNA reduced the level of LC3, which suggested that the PERK-eIF2α pathway contributed to autophagy induced by BTV1. Furthermore, inactivation of PERK or silencing of eIF2α both significantly reduced the expression of VP2 protein and the viral yields in the supernatants. In sum, these data suggest that ER stress mediates autophagy via the PERK-eIF2α pathway and contributes to BTV1 replication, thus offering new insight into the molecular mechanisms of the BTV-host interaction.


Asunto(s)
Virus de la Lengua Azul/patogenicidad , Factor 2 Eucariótico de Iniciación/metabolismo , eIF-2 Quinasa/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/fisiología , Proteínas de la Cápside/genética , Proteínas de la Cápside/fisiología , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/genética , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/metabolismo , Indoles/farmacología , Modelos Biológicos , Transducción de Señal , Respuesta de Proteína Desplegada , Replicación Viral , eIF-2 Quinasa/antagonistas & inhibidores
15.
J Virol ; 88(18): 10399-411, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24991012

RESUMEN

UNLABELLED: Bluetongue is a major infectious disease of ruminants caused by bluetongue virus (BTV), an arbovirus transmitted by Culicoides. Here, we assessed virus and host factors influencing the clinical outcome of BTV infection using a single experimental framework. We investigated how mammalian host species, breed, age, BTV serotypes, and strains within a serotype affect the clinical course of bluetongue. Results obtained indicate that in small ruminants, there is a marked difference in the susceptibility to clinical disease induced by BTV at the host species level but less so at the breed level. No major differences in virulence were found between divergent serotypes (BTV-8 and BTV-2). However, we observed striking differences in virulence between closely related strains of the same serotype collected toward the beginning and the end of the European BTV-8 outbreak. As observed previously, differences in disease severity were also observed when animals were infected with either blood from a BTV-infected animal or from the same virus isolated in cell culture. Interestingly, with the exception of two silent mutations, full viral genome sequencing showed identical consensus sequences of the virus before and after cell culture isolation. However, deep sequencing analysis revealed a marked decrease in the genetic diversity of the viral population after passaging in mammalian cells. In contrast, passaging in Culicoides cells increased the overall number of low-frequency variants compared to virus never passaged in cell culture. Thus, Culicoides might be a source of new viral variants, and viral population diversity can be another factor influencing BTV virulence. IMPORTANCE: Bluetongue is one of the major infectious diseases of ruminants. It is caused by an arbovirus known as bluetongue virus (BTV). The clinical outcome of BTV infection is extremely variable. We show that there are clear links between the severity of bluetongue and the mammalian host species infected, while at the breed level differences were less evident. No differences were observed in the virulence of two different BTV serotypes (BTV-8 and BTV-2). In contrast, we show that the European BTV-8 strain isolated at the beginning of the bluetongue outbreak in 2006 was more virulent than a strain isolated toward the end of the outbreak. In addition, we show that there is a link between the variability of the BTV population as a whole and virulence, and our data also suggest that Culicoides cells might function as an "incubator" of viral variants.


Asunto(s)
Virus de la Lengua Azul/patogenicidad , Lengua Azul/virología , Enfermedades de las Cabras/virología , Enfermedades de las Ovejas/virología , Factores de Edad , Animales , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/fisiología , Ceratopogonidae/virología , Femenino , Genoma Viral , Cabras , Interacciones Huésped-Patógeno , Insectos Vectores/virología , Masculino , Ratones , Datos de Secuencia Molecular , Ovinos , Virulencia
16.
J Gen Virol ; 95(Pt 9): 2019-2029, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24914064

RESUMEN

Bluetongue is a disease in ruminants caused by the bluetongue virus (BTV), and is spread by Culicoides biting midges. Bluetongue outbreaks cause huge economic losses and death in sheep in several parts of the world. The most effective measure to control BTV is vaccination. However, both commercially available vaccines and recently developed vaccine candidates have several shortcomings. Therefore, we generated and tested next-generation vaccines for bluetongue based on the backbone of a laboratory-adapted strain of BTV-1, avirulent BTV-6 or virulent BTV-8. All vaccine candidates were serotyped with VP2 of BTV-8 and did not express NS3/NS3a non-structural proteins, due to induced deletions in the NS3/NS3a ORF. Sheep were vaccinated once with one of these vaccine candidates and were challenged with virulent BTV-8 3 weeks after vaccination. The NS3/NS3a knockout mutation caused complete avirulence for all three BTV backbones, including for virulent BTV-8, indicating that safety is associated with the NS3/NS3a knockout phenotype. Viraemia of vaccine virus was not detected using sensitive PCR diagnostics. Apparently, the vaccine viruses replicated only locally, which will minimize spread by the insect vector. In particular, the vaccine based on the BTV-6 backbone protected against disease and prevented viraemia of challenge virus, showing the efficacy of this vaccine candidate. The lack of NS3/NS3a expression potentially enables the differentiation of infected from vaccinated animals, which is important for monitoring virus spread in vaccinated livestock. The disabled infectious single-animal vaccine for bluetongue presented here is very promising and will be the subject of future studies.


Asunto(s)
Virus de la Lengua Azul/inmunología , Lengua Azul/prevención & control , Ovinos/virología , Vacunación/veterinaria , Proteínas no Estructurales Virales/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Lengua Azul/inmunología , Lengua Azul/virología , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Proteínas de la Cápside/inmunología , Línea Celular , Cricetinae , Femenino , Técnicas de Inactivación de Genes , Ovinos/inmunología , Proteínas del Núcleo Viral/inmunología , Vacunas Virales/inmunología , Viremia/inmunología , Viremia/veterinaria , Viremia/virología
17.
J Virol ; 87(2): 882-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115294

RESUMEN

The replication mechanism of bluetongue virus (BTV) has been studied by an in vivo reverse genetics (RG) system identifying the importance of certain BTV proteins for primary replication of the virus. However, a unique in vitro cell-free virus assembly system was subsequently developed, showing that it did not require the same set of viral components, which is indicative of differences in these two systems. Here, we studied the in vivo primary replicase complex more in-depth to determine the minimum components of the complex. We showed that while NS2 is an essential component of the primary replication stage during BTV infection, NS1 is not an essential component but may play a role in enhancing BTV protein synthesis. Furthermore, we demonstrated that VP7, a major structural protein of the inner core, is not required for primary replication but appears to stabilize the replicase complex. In contrast, VP3, the other major structural core protein, is an essential component of the complex, together with the three minor enzymatic proteins (VP1, VP4, and VP6) of the core. In addition, our data have demonstrated that the smallest minor protein, VP6, which is known to possess an RNA-dependent helicase activity, may also act as an RNA translocator during assembly of the primary replicase complex.


Asunto(s)
Virus de la Lengua Azul/fisiología , Complejos Multiproteicos/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Complejos Multiproteicos/genética , ARN Polimerasa Dependiente del ARN/genética , Genética Inversa , Proteínas Virales/genética
18.
J Virol ; 86(15): 8337-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22787269

RESUMEN

In this article, we document the first complete genome sequence of an isolate of bluetongue virus serotype 16 (BTV16) from a goat in India. The virus was isolated from an in-contact goat from an animal farm in Chennai where clinical disease occurs in sheep. The total size of the genome is 19,185 bp. The information provided for full-length sequences of all 10 segments will help in understanding the geographical origin and transmission of the Indian isolate of BTV16 as well as its comparison with global isolates of BTV16 of sheep, cattle, and other host species origins.


Asunto(s)
Virus de la Lengua Azul/genética , Genoma Viral , Animales , Secuencia de Bases , Virus de la Lengua Azul/patogenicidad , Bovinos/virología , Cabras/virología , India , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Ovinos/virología
19.
J Virol ; 85(10): 4783-91, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21411520

RESUMEN

Bluetongue virus (BTV), a member of the Reoviridae family, is an insect-borne animal pathogen. Virus release from infected cells is predominantly by cell lysis, but some BTV particles are also released from the plasma membrane. The nonstructural protein NS3 has been implicated in this process. Using alternate initiator methionine residues, NS3 is expressed as a full-length protein and as a truncated variant that lacks the initial 13 residues, which, by yeast-two hybrid analyses, have been shown to interact with a cellular trafficking protein S100A10/p11. To understand the physiological significance of this interaction in virus-infected cells, we have used reverse genetics to investigate the roles of NS3 and NS3A in virus replication and localization in both mammalian and insect vector-derived cells. A virus expressing NS3 but not NS3A was able to propagate in and release from mammalian cells efficiently. However, growth of a mutant virus expressing only NS3A was severely attenuated, although protein expression, replication, double-stranded RNA (dsRNA) synthesis, and particle assembly in the cytoplasm were observed. Two of three single-amino-acid substitutions in the N-terminal 13 residues of NS3 showed phenotypically similar effects. Pulldown assay and confocal microscopy demonstrated a lack of interaction between NS3 and S100A10/p11 in mutants with poor replication. The role of NS3/NS3A was also assessed in insect cells where virus grew, albeit with a reduced titer. Notably, however, while wild-type particles were found within cytoplasmic vesicles in insect cells, mutant viruses were scattered throughout the cytoplasm and not confined to vesicles. These results provide support for a role for the extreme amino terminus of NS3 in the late stages of virus growth in mammalian cells, plausibly in egress. However, both NS3 and NS3A were required for efficient BTV growth in insect cells.


Asunto(s)
Anexina A2/metabolismo , Virus de la Lengua Azul/patogenicidad , Interacciones Huésped-Patógeno , Mapeo de Interacción de Proteínas , Proteínas S100/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sustitución de Aminoácidos , Animales , Virus de la Lengua Azul/crecimiento & desarrollo , Línea Celular , Cricetinae , Eliminación de Gen , Insectos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Técnicas del Sistema de Dos Híbridos , Proteínas no Estructurales Virales/genética
20.
J Virol ; 85(21): 11479-89, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21865388

RESUMEN

Bluetongue is a major infectious disease of ruminants that is caused by bluetongue virus (BTV). In this study, we analyzed virulence and genetic differences of (i) three BTV field strains from Italy maintained at either a low (L strains) or high (H strains) passage number in cell culture and (ii) three South African "reference" wild-type strains and their corresponding live attenuated vaccine strains. The Italian BTV L strains, in general, were lethal for both newborn NIH-Swiss mice inoculated intracerebrally and adult type I interferon receptor-deficient (IFNAR(-/-)) mice, while the virulence of the H strains was attenuated significantly in both experimental models. Similarly, the South African vaccine strains were not pathogenic for IFNAR(-/-) mice, while the corresponding wild-type strains were virulent. Thus, attenuation of the virulence of the BTV strains used in this study is not mediated by the presence of an intact interferon system. No clear distinction in virulence was observed for the South African BTV strains in newborn NIH-Swiss mice. Full genomic sequencing revealed relatively few amino acid substitutions, scattered in several different viral proteins, for the strains found to be attenuated in mice compared to the pathogenic related strains. However, only the genome segments encoding VP1, VP2, and NS2 consistently showed nonsynonymous changes between all virulent and attenuated strain pairs. This study established an experimental platform for investigating the determinants of BTV virulence. Future studies using reverse genetics will allow researchers to precisely map and "weight" the relative influences of the various genome segments and viral proteins on BTV virulence.


Asunto(s)
Virus de la Lengua Azul/patogenicidad , Lengua Azul/patología , Lengua Azul/virología , Factores de Virulencia/genética , Sustitución de Aminoácidos/genética , Animales , Animales Recién Nacidos , Virus de la Lengua Azul/aislamiento & purificación , Modelos Animales de Enfermedad , Genoma Viral , Italia , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Receptor de Interferón alfa y beta/deficiencia , Enfermedades de los Roedores/patología , Enfermedades de los Roedores/virología , Análisis de Secuencia de ADN , Pase Seriado , Análisis de Supervivencia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA