Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Physiol Plant ; 167(4): 645-660, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30637759

RESUMEN

Plant responses to drought and their subsequent rehydration can provide evidence for forest dynamics within the context of climate change. In this study, the seedlings of two native species (Vitex negundo var. heterophylla, Quercus acutissima) and two exotic species (Robinia pseudoacacia, Amorpha fruticosa) to China were selected in a greenhouse experiment. The gas exchange, stem hydraulic parameters, plant osmoprotectant contents and antioxidant activities of the seedlings that were subjected to sustained drought and rehydration (test group) as well as those of well-irrigated seedlings (control group) were measured. The two native species exhibited a greater degree of isohydry with drought because they limited the stomatal opening timely from the onset of the drought. However, the two exotic species showed a more 'water spender'-like strategy with R. pseudoacacia showing anisohydric responses and A. fruticosa showing isohydrodynamic responses to drought. Severe drought significantly decreased the leaf gas exchange rates and hydraulic properties, whereas the instantaneous water use efficiency and osmoprotectant contents increased markedly. Most of the physiological parameters recovered rapidly after mild drought rehydration, but the water potential and/or supply of nonstructural carbohydrates did not recover after severe drought rehydration. The results demonstrate that the xylem hydraulic conductivity and shoot water potential jointly play a crucial role in the drought recovery of woody plants. In brief, the native species may play a dominant role in the future in warm-temperate forests because they employ a better balance between carbon gain and water loss than the alien species under extreme drought conditions.


Asunto(s)
Deshidratación , Sequías , Árboles/fisiología , Agua , China , Fabaceae/fisiología , Especies Introducidas , Quercus/fisiología , Robinia/fisiología , Vitex/fisiología
2.
Proc Biol Sci ; 285(1877)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29669903

RESUMEN

Often the mutualistic roles of extinct species are inferred based on plausible assumptions, but sometimes palaeoecological evidence can overturn such inferences. We present an example from New Zealand, where it has been widely assumed that some of the largest-seeded plants were dispersed by the giant extinct herbivorous moa (Dinornithiformes). The presence of large seeds in preserved moa gizzard contents supported this hypothesis, and five slow-germinating plant species (Elaeocarpus dentatus, E. hookerianus, Prumnopitys ferruginea, P. taxifolia, Vitex lucens) with thick seedcoats prompted speculation about whether these plants were adapted for moa dispersal. However, we demonstrate that all these assumptions are incorrect. While large seeds were present in 48% of moa gizzards analysed, analysis of 152 moa coprolites (subfossil faeces) revealed a very fine-grained consistency unparalleled in extant herbivores, with no intact seeds larger than 3.3 mm diameter. Secondly, prolonged experimental mechanical scarification of E. dentatus and P. ferruginea seeds did not reduce time to germination, providing no experimental support for the hypothesis that present-day slow germination results from the loss of scarification in moa guts. Paradoxically, although moa were New Zealand's largest native herbivores, the only seeds to survive moa gut passage intact were those of small-seeded herbs and shrubs.


Asunto(s)
Extinción Biológica , Herbivoria , Paleognatos/fisiología , Dispersión de Semillas , Árboles/fisiología , Animales , Elaeocarpaceae/fisiología , Fósiles , Nueva Zelanda , Semillas/fisiología , Tracheophyta/fisiología , Vitex/fisiología
3.
Rev Biol Trop ; 61(3): 1083-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24027909

RESUMEN

Vitex trifolia is a shrub species with popular use as a medicinal plant, for which leaves, roots and flowers have been reported to heal different distresses. The increasing exploitation of these plants has endangered its conservation, and has importantly justified the use of biotechnological tools for their propagation. Our aim was to present an efficient protocol for plant regeneration through organogenesis; and simultaneously, to analyze the genetic homogeneity of the established clonal lines by Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) markers. Plantlet regeneration was achieved in callus cultures derived from stem, leaf and petiole explants of V. trifolia on a differently supplemented Murashige & Skoog medium, and incubated at 25 +/-2 degrees C under a light intensity of 61 micromol/m2s from cool white fluorescent lamps and a 16 h photoperiod. The rate of shoot bud regeneration was positively correlated with the concentration of hormones in the nutrient media. Shoot buds regenerated more rapidly from stem and petiole explants as compared to leaf explants on medium containing 11.10 microM BAP in combination with 0.54 microMNAA. Addition of 135.74-271.50 microM adenine sulphate (Ads) and 0.72-1.44 microM gibberellic acid (GA3) to the culture medium increased the growth of shoot buds. The highest rate of shoot bud regeneration responses was obtained in stem explants using 11.10 microM BAP in combination with 0.54 microM NAA, 271.50 microM Ads and 1.44 microM GA3. In vitro rooting of the differentiated shoots was achieved in media containing 1.23 microM indole butyric acid (IBA) with 2% (w/v) sucrose. Regenerated plantlets were successfully established in soil with 86% survival under field condition. Randomly Amplified Polymorphic DNA and Inter Simple Sequence Repeat markers analyses have confirmed the genetic uniformity of the regenerated plantlets derived from the second up to fifth subcultures. This protocol may help in mass propagation and conservation of this important medicinal plant of great therapeutic potential.


Asunto(s)
Plantas Medicinales/fisiología , Regeneración/fisiología , Vitex/fisiología , Repeticiones de Microsatélite , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Plantas Medicinales/clasificación , Plantas Medicinales/efectos de los fármacos , Técnica del ADN Polimorfo Amplificado Aleatorio , Regeneración/efectos de los fármacos , Vitex/clasificación , Vitex/efectos de los fármacos
4.
Mol Plant Microbe Interact ; 25(4): 496-504, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22409157

RESUMEN

Low temperatures damage many temperate crops, including grapevine, which, when exposed to chilling, can be affected by symptoms ranging from reduced yield up to complete infertility. We have previously demonstrated that Burkholderia phytofirmans PsJN, a plant growth-promoting rhizobacteria (PGPR) that colonizes grapevine, is able to reduce chilling-induced damage. We hypothesized that the induced tolerance may be explained at least partly by the impact of bacteria on grapevine photosynthesis or carbohydrate metabolism during cold acclimation. To investigate this hypothesis, we monitored herein the fluctuations of photosynthesis parameters (net photosynthesis [P(n)], intercellular CO(2) concentration, stomatal conductances, ΦPSII, and total chlorophyll concentration), starch, soluble sugars (glucose, fructose, saccharose, mannose, raffinose, and maltose), and their precursors during 5 days of chilling exposure (4°C) on grapevine plantlets. Bacterization affects photosynthesis in a non-stomatal dependent pattern and reduced long-term impact of chilling on P(n). Furthermore, all studied carbohydrates known to be involved in cold stress tolerance accumulate in non-chilled bacterized plantlets, although some of them remained more concentrated in the latter after chilling exposure. Overall, our results suggest that modification of carbohydrate metabolism in bacterized grapevine plantlets may be one of the major effects by which this PGPR reduces chilling-induced damage.


Asunto(s)
Adaptación Fisiológica/fisiología , Burkholderia/metabolismo , Frío , Vitex/microbiología , Vitex/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/genética , Carbohidratos/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Glucólisis/fisiología , Fotosíntesis/fisiología , Pigmentos Biológicos/metabolismo , Almidón/metabolismo
5.
Sci Total Environ ; 609: 27-37, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28734247

RESUMEN

Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ2H and δ18O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau.


Asunto(s)
Artemisia/fisiología , Poaceae/fisiología , Estaciones del Año , Vitex/fisiología , Agua/metabolismo , Teorema de Bayes , China , Ecosistema , Isótopos/análisis , Suelo
6.
Rev. biol. trop ; Rev. biol. trop;61(3): 1083-1094, sep. 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-688461

RESUMEN

Vitex trifolia is a shrub species with popular use as a medicinal plant, for which leaves, roots and flowers have been reported to heal different distresses. The increasing exploitation of these plants has endangered its conservation, and has importantly justified the use of biotechnological tools for their propagation. Our aim was to present an efficient protocol for plant regeneration through organogenesis; and simultaneously, to analyze the genetic homogeneity of the established clonal lines by Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) markers. Plantlet regeneration was achieved in callus cultures derived from stem, leaf and petiole explants of V. trifolia on a differently supple mented Murashige & Skoog medium, and incubated at 25±2ºC under a light intensity of 61µmol/m2s from cool white fluorescent lamps and a 16h photoperiod. The rate of shoot bud regeneration was positively correlated with the concentration of hormones in the nutrient media. Shoot buds regenerated more rapidly from stem and petiole explants as compared to leaf explants on medium containing 11.10µM BAP in combination with 0.54µMNAA. Addition of 135.74-271.50µM adenine sulphate (Ads) and 0.72-1.44µM gibberellic acid (GA3) to the culture medium increased the growth of shoot buds. The highest rate of shoot bud regeneration responses was obtained in stem explants using 11.10µM BAP in combination with 0.54µM NAA, 271.50µM Ads and 1.44µM GA3. In vitro rooting of the differentiated shoots was achieved in media containing 1.23µM indole butyric acid (IBA) with 2% (w/v) sucrose. Regenerated plantlets were successfully established in soil with 86% survival under field condition. Randomly Amplified Polymorphic DNA and Inter Simple Sequence Repeat markers analyses have confirmed the genetic uniformity of the regenerated plantlets derived from the second up to fifth subcultures. This protocol may help in mass propagation and conservation of this important medicinal plant of great therapeutic potential.


Vitex trifolia es una especie arbustiva de uso popular como planta medicinal, sus hojas, raíces y flores se han reportado para la cura de diferentes aflicciones. El aumento de la explotación de estas plantas ha puesto en peligro su conservación y ha justificado el uso de herramientas biotecnológicas para su propagación. El objetivo de esta investigación fue presentar un protocolo eficiente para la regeneración de estas plantas a través de la organogénesis, y analizar la homogeneidad genética de las líneas clonales establecidas por ADN polimórfico amplificado aleatoriamente (RAPD) mediante la repetición de marcadores de inter secuencia simple (ISSR). La regeneración de plántulas se logró en cultivos de callos derivados de explantes de tallo, hoja y pecíolo de V. trifolia en un medio diferenciado Murashige & Skoog, que se incubaron a 25±2ºC bajo una intensidad de luz de 61μmol/m2s con lámparas fluorescentes blancas y un fotoperíodo de 16h. La tasa de regeneración de brotes se correlacionó positivamente con la concentración de las hormonas en el medio nutritivo. Los brotes se regeneraron más rápidamente a partir de explantes de tallo y pecíolos en comparación con explantes de hoja. La mayor tasa de regeneración de brotes se obtuvo en los explantes de tallo utilizando 11.10μM BAP en combinación con 0.54μM NAA, 271.50μM Ads y 1.44μM GA3. Este protocolo puede ayudar a la propagación masiva y conservación de esta importante planta medicinal de gran potencial terapéutico.


Asunto(s)
Plantas Medicinales/fisiología , Regeneración/fisiología , Vitex/fisiología , Repeticiones de Microsatélite , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Plantas Medicinales/clasificación , Plantas Medicinales/efectos de los fármacos , Técnica del ADN Polimorfo Amplificado Aleatorio , Regeneración/efectos de los fármacos , Vitex/clasificación , Vitex/efectos de los fármacos
7.
Pak J Biol Sci ; 10(22): 4113-7, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19090289

RESUMEN

In this research a simple and repeatable method for regeneration of a important medicinal plant (Vitex agnus castus) described. Different seedling explants such as hypocotyl, cotyledon, root and apical meristem were cultured in MS basal media with different kinds and concentrations of PGRs. Root and apical meristem explants were the only explants that have regeneration whole plantlets potential. It was interesting that regeneration whole plantlets from root and apical meristem explants have different developmental pathways. Whole plantlets from apical meristem explants regenerated by passing phase callusing whereas regeneration whole plantlets from root was direct and without phase callusing. This subject implies that we can have many manipulation possibilities in order to different objects of tissue culture by selecting different explants in vitegnus.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Semillas/metabolismo , Técnicas de Cultivo de Tejidos , Vitex/fisiología , Cotiledón/fisiología , Medios de Cultivo , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/citología , Regeneración , Plantones/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA