Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.059
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 172(5): 1038-1049.e10, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29456081

RESUMEN

ß-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.


Asunto(s)
Antibacterianos/farmacología , Formas L/efectos de los fármacos , Muramidasa/metabolismo , beta-Lactamas/farmacología , Animales , Bacillus subtilis/efectos de los fármacos , Bacteriólisis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Hidrolasas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Viabilidad Microbiana/efectos de los fármacos , Osmorregulación/efectos de los fármacos , Penicilina G/farmacología , Proteínas de Unión a las Penicilinas , Peptidoglicano/metabolismo , Profagos/efectos de los fármacos , Células RAW 264.7
2.
Cell ; 159(6): 1300-11, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25480295

RESUMEN

Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development.


Asunto(s)
Amdinocilina/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , beta-Lactamas/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/enzimología , Escherichia coli/citología , Escherichia coli/enzimología , Glicósido Hidrolasas/antagonistas & inhibidores , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo
3.
Nature ; 613(7943): 375-382, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599987

RESUMEN

Broad-spectrum ß-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses ß-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (ß-lactamase PC1) and mecA (ß-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without ß-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from ß-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Resistencia betalactámica , beta-Lactamas , Humanos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Resistencia betalactámica/efectos de los fármacos , beta-Lactamas/química , beta-Lactamas/farmacología , Microscopía por Crioelectrón , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
4.
Nature ; 610(7932): 540-546, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198788

RESUMEN

The spread of antibiotic resistance is attracting increased attention to combination-based treatments. Although drug combinations have been studied extensively for their effects on bacterial growth1-11, much less is known about their effects on bacterial long-term clearance, especially at cidal, clinically relevant concentrations12-14. Here, using en masse microplating and automated image analysis, we systematically quantify Staphylococcus aureus survival during prolonged exposure to pairwise and higher-order cidal drug combinations. By quantifying growth inhibition, early killing and longer-term population clearance by all pairs of 14 antibiotics, we find that clearance interactions are qualitatively different, often showing reciprocal suppression whereby the efficacy of the drug mixture is weaker than any of the individual drugs alone. Furthermore, in contrast to growth inhibition6-10 and early killing, clearance efficacy decreases rather than increases as more drugs are added. However, specific drugs targeting non-growing persisters15-17 circumvent these suppressive effects. Competition experiments show that reciprocal suppressive drug combinations select against resistance to any of the individual drugs, even counteracting methicillin-resistant Staphylococcus aureus both in vitro and in a Galleria mellonella larva model. As a consequence, adding a ß-lactamase inhibitor that is commonly used to potentiate treatment against ß-lactam-resistant strains can reduce rather than increase treatment efficacy. Together, these results underscore the importance of systematic mapping the long-term clearance efficacy of drug combinations for designing more-effective, resistance-proof multidrug regimes.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana , Staphylococcus aureus , Humanos , Antibacterianos/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/farmacología , Combinación de Medicamentos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/citología , Staphylococcus aureus/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Sinergismo Farmacológico
5.
Proc Natl Acad Sci U S A ; 120(8): e2215237120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787358

RESUMEN

Acinetobacter baumannii is a gram-negative bacterial pathogen that causes challenging nosocomial infections. ß-lactam targeting of penicillin-binding protein (PBP)-mediated cell wall peptidoglycan (PG) formation is a well-established antimicrobial strategy. Exposure to carbapenems or zinc (Zn)-deprived growth conditions leads to a rod-to-sphere morphological transition in A. baumannii, an effect resembling that caused by deficiency in the RodA-PBP2 PG synthesis complex required for cell wall elongation. While it is recognized that carbapenems preferentially acylate PBP2 in A. baumannii and therefore block the transpeptidase function of the RodA-PBP2 system, the molecular details underpinning cell wall elongation inhibition upon Zn starvation remain undefined. Here, we report the X-ray crystal structure of A. baumannii PBP2, revealing an unexpected Zn coordination site in the transpeptidase domain required for protein stability. Mutations in the Zn-binding site of PBP2 cause a loss of bacterial rod shape and increase susceptibility to ß-lactams, therefore providing a direct rationale for cell wall shape maintenance and Zn homeostasis in A. baumannii. Furthermore, the Zn-coordinating residues are conserved in various ß- and γ-proteobacterial PBP2 orthologs, consistent with a widespread Zn-binding requirement for function that has been previously unknown. Due to the emergence of resistance to virtually all marketed antibiotic classes, alternative or complementary antimicrobial strategies need to be explored. These findings offer a perspective for dual inhibition of Zn-dependent PG synthases and metallo-ß-lactamases by metal chelating agents, considered the most sought-after adjuvants to restore ß-lactam potency against gram-negative bacteria.


Asunto(s)
Acinetobacter baumannii , Peptidil Transferasas , Acinetobacter baumannii/metabolismo , Peptidil Transferasas/metabolismo , Zinc/metabolismo , Forma de la Célula , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , beta-Lactamas/farmacología , Carbapenémicos/farmacología , Quelantes/farmacología , Sitios de Unión , Proteínas Bacterianas/metabolismo
6.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043796

RESUMEN

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Asunto(s)
Proteínas Bacterianas , Clostridioides difficile , Peptidoglicano , Peptidil Transferasas , Proteínas Bacterianas/química , Resistencia betalactámica , beta-Lactamas/farmacología , Catálisis , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferasas/química , Peptidil Transferasas/genética
7.
PLoS Genet ; 18(12): e1010274, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36480495

RESUMEN

A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with ß-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR.


Asunto(s)
Agrobacterium tumefaciens , Pared Celular , Agrobacterium tumefaciens/genética , Pared Celular/genética , beta-Lactamas/farmacología
8.
J Bacteriol ; 206(8): e0013024, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38995039

RESUMEN

c-di-AMP is an essential second messenger that binds and regulates several proteins of different functions within bacterial cells. Among those, PstA is a structurally conserved c-di-AMP-binding protein, but its function is largely unknown. PstA is structurally similar to PII signal transduction proteins, although it specifically binds c-di-AMP rather than other PII ligands such as ATP and α-ketoglutarate. In Listeria monocytogenes, we found that PstA increases ß-lactam susceptibility at normal and low c-di-AMP levels, but increases ß-lactam resistance upon c-di-AMP accumulation. Examining a PstA mutant defective for c-di-AMP binding, we found the apo form of PstA to be toxic for ß-lactam resistance, and the c-di-AMP-bound form to be beneficial. Intriguingly, a role for PstA in ß-lactam resistance is only prominent in aerobic cultures, and largely diminished under hypoxic conditions, suggesting that PstA function is linked to aerobic metabolism. However, PstA does not control aerobic growth rate, and has a modest influence on the tricarboxylic acid cycle and membrane potential-an indicator of cellular respiration. The regulatory role of PstA in ß-lactam resistance is unrelated to reactive oxygen species or oxidative stress. Interestingly, during aerobic growth, PstA function requires the cytochrome bd oxidase (CydAB), a component of the respiratory electron transport chain. The requirement for CydAB might be related to its function in maintaining a membrane potential, or redox stress response activities. Altogether, we propose a model in which apo-PstA diminishes ß-lactam resistance by interacting with an effector protein, and this activity can be countered by c-di-AMP binding or a by-product of redox stress. IMPORTANCE: PstA is a structurally conserved c-di-AMP-binding protein that is broadly present among Firmicutes bacteria. Furthermore, PstA binds c-di-AMP at high affinity and specificity, indicating an important role in the c-di-AMP signaling network. However, the molecular function of PstA remains elusive. Our findings reveal contrasting roles of PstA in ß-lactam resistance depending on c-di-AMP-binding status. We also define physiological conditions for PstA function during aerobic growth. Future efforts can exploit these conditions to identify PstA interaction partners under ß-lactam stress.


Asunto(s)
Proteínas Bacterianas , Listeria monocytogenes , Resistencia betalactámica , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/enzimología , Listeria monocytogenes/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Resistencia betalactámica/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Grupo Citocromo b/metabolismo , Grupo Citocromo b/genética , beta-Lactamas/farmacología , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica
9.
J Struct Biol ; 216(2): 108086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527711

RESUMEN

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used ß-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of ß-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of ß-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing ß-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.


Asunto(s)
Proteínas de Unión a las Penicilinas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Cristalografía por Rayos X , Cinética , Antibacterianos/farmacología , Antibacterianos/química , beta-Lactamas/farmacología , beta-Lactamas/metabolismo , beta-Lactamas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Dominio Catalítico , Conformación Proteica , Modelos Moleculares
10.
J Biol Chem ; 299(5): 104606, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924941

RESUMEN

L1 is a dizinc subclass B3 metallo-ß-lactamase (MBL) that hydrolyzes most ß-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed ß-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the ß-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1ß-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1ß-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1ß-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (ß) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and ß-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.


Asunto(s)
Antibacterianos , Inhibidores de beta-Lactamasas , beta-Lactamas , Humanos , Antibacterianos/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química , beta-Lactamas/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacología , Carbapenémicos/metabolismo , Cristalografía , Cinética , Stenotrophomonas maltophilia/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico
11.
Clin Infect Dis ; 79(1): 33-42, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38306487

RESUMEN

Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of ß-lactamases. The early ß-lactamase inhibitors (BLIs) are characterized by spectra limited to class A ß-lactamases and ineffective against carbapenemases and most extended spectrum ß-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.


Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Inhibidores de beta-Lactamasas , beta-Lactamasas , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/metabolismo , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Proteínas Bacterianas , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Meropenem/farmacología , Meropenem/uso terapéutico , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología
12.
BMC Genomics ; 25(1): 508, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778284

RESUMEN

BACKGROUND: Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.


Asunto(s)
Bacterias Gramnegativas , Filogenia , beta-Lactamasas , beta-Lactamasas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , beta-Lactamas/farmacología , beta-Lactamas/metabolismo , Antibacterianos/farmacología , Genoma Bacteriano , Resistencia betalactámica/genética , Antibióticos Betalactámicos
13.
J Am Chem Soc ; 146(11): 7708-7722, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457782

RESUMEN

Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the ß-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic ß-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.


Asunto(s)
Sideróforos , beta-Lactamas , Sideróforos/farmacología , beta-Lactamas/farmacología , Lactamas , Antibacterianos/farmacología , Enterobactina/farmacología , Enterobactina/metabolismo , Bacterias Gramnegativas , Hierro
14.
Antimicrob Agents Chemother ; 68(3): e0162723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38349162

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most ß-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed "NaHCO3-responsiveness" has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care ß-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such "NaHCO3-responsive" isolates can be effectively cleared by ß-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3-responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting ß-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific ß-lactam agents.


Asunto(s)
Endocarditis Bacteriana , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Cefuroxima/farmacología , Bicarbonatos/farmacología , Staphylococcus aureus , beta-Lactamas/farmacología , Endocarditis Bacteriana/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico
15.
Antimicrob Agents Chemother ; 68(3): e0139923, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38329330

RESUMEN

Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.


Asunto(s)
Inhibidores de beta-Lactamasas , beta-Lactamas , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/farmacología , Doripenem , Agar , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Penicilinas , Ácido Clavulánico/farmacología , Imipenem/farmacología , Agua , Pruebas de Sensibilidad Microbiana
16.
Antimicrob Agents Chemother ; 68(4): e0158623, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38411952

RESUMEN

Increasing evidence supports the repositioning of beta-lactams for tuberculosis (TB) therapy, but further research on their interaction with conventional anti-TB agents is still warranted. Moreover, the complex cell envelope of Mycobacterium tuberculosis (Mtb) may pose an additional obstacle to beta-lactam diffusion. In this context, we aimed to identify synergies between beta-lactams and anti-TB drugs ethambutol (EMB) and isoniazid (INH) by assessing antimicrobial effects, intracellular activity, and immune responses. Checkerboard assays with H37Rv and eight clinical isolates, including four drug-resistant strains, exposed that only treatments containing EMB and beta-lactams achieved synergistic effects. Meanwhile, the standard EMB and INH association failed to produce any synergy. In Mtb-infected THP-1 macrophages, combinations of EMB with increasing meropenem (MEM) concentrations consistently displayed superior killing activities over the individual antibiotics. Flow cytometry with BODIPY FL vancomycin, which binds directly to the peptidoglycan (PG), confirmed an increased exposure of this layer after co-treatment. This was reinforced by the high IL-1ß secretion levels found in infected macrophages after incubation with MEM concentrations above 5 mg/L, indicating an exposure of the host innate response sensors to pathogen-associated molecular patterns in the PG. Our findings show that the proposed impaired access of beta-lactams to periplasmic transpeptidases is counteracted by concomitant administration with EMB. The efficiency of this combination may be attributed to the synchronized inhibition of arabinogalactan and PG synthesis, two key cell wall components. Given that beta-lactams exhibit a time-dependent bactericidal activity, a more effective pathogen recognition and killing prompted by this association may be highly beneficial to optimize TB regimens containing carbapenems.IMPORTANCEAddressing drug-resistant tuberculosis with existing therapies is challenging and the treatment success rate is lower when compared to drug-susceptible infection. This study demonstrates that pairing beta-lactams with ethambutol (EMB) significantly improves their efficacy against Mycobacterium tuberculosis (Mtb). The presence of EMB enhances beta-lactam access through the cell wall, which may translate into a prolonged contact between the drug and its targets at a concentration that effectively kills the pathogen. Importantly, we showed that the effects of the EMB and meropenem (MEM)/clavulanate combination were maintained intracellularly. These results are of high significance considering that the time above the minimum inhibitory concentration is the main determinant of beta-lactam efficacy. Moreover, a correlation was established between incubation with higher MEM concentrations during macrophage infection and increased IL-1ß secretion. This finding unveils a previously overlooked aspect of carbapenem repurposing against tuberculosis, as certain Mtb strains suppress the secretion of this key pro-inflammatory cytokine to evade host surveillance.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Etambutol/farmacología , Etambutol/uso terapéutico , Meropenem/farmacología , Meropenem/uso terapéutico , Ácido Clavulánico/farmacología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis/microbiología , Carbapenémicos/farmacología , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Pruebas de Sensibilidad Microbiana
17.
Antimicrob Agents Chemother ; 68(7): e0021824, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38837393

RESUMEN

NaHCO3 responsiveness is a novel phenotype where some methicillin-resistant Staphylococcus aureus (MRSA) isolates exhibit significantly lower minimal inhibitory concentrations (MIC) to oxacillin and/or cefazolin in the presence of NaHCO3. NaHCO3 responsiveness correlated with treatment response to ß-lactams in an endocarditis animal model. We investigated whether treatment of NaHCO3-responsive strains with ß-lactams was associated with faster clearance of bacteremia. The CAMERA2 trial (Combination Antibiotics for Methicillin-Resistant Staphylococcus aureus) randomly assigned participants with MRSA bloodstream infections to standard therapy, or to standard therapy plus an anti-staphylococcal ß-lactam (combination therapy). For 117 CAMERA2 MRSA isolates, we determined by broth microdilution the MIC of cefazolin and oxacillin, with and without 44 mM of NaHCO3. Isolates exhibiting ≥4-fold decrease in the MIC to cefazolin or oxacillin in the presence of NaHCO3 were considered "NaHCO3-responsive" to that agent. We compared the rate of persistent bacteremia among participants who had infections caused by NaHCO3-responsive and non-responsive strains, and that were assigned to combination treatment with a ß-lactam. Thirty-one percent (36/117) and 25% (21/85) of MRSA isolates were NaHCO3-responsive to cefazolin and oxacillin, respectively. The NaHCO3-responsive phenotype was significantly associated with sequence type 93, SCCmec type IVa, and mecA alleles with substitutions in positions -7 and -38 in the regulatory region. Among participants treated with a ß-lactam, there was no association between the NaHCO3-responsive phenotype and persistent bacteremia (cefazolin, P = 0.82; oxacillin, P = 0.81). In patients from a randomized clinical trial with MRSA bloodstream infection, isolates with an in vitro ß-lactam-NaHCO3-responsive phenotype were associated with distinctive genetic signatures, but not with a shorter duration of bacteremia among those treated with a ß-lactam.


Asunto(s)
Antibacterianos , Cefazolina , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Oxacilina , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefazolina/farmacología , Cefazolina/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Oxacilina/farmacología , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Fenotipo , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Masculino , Bicarbonato de Sodio/farmacología , Femenino , Persona de Mediana Edad
18.
Antimicrob Agents Chemother ; 68(7): e0031924, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38757973

RESUMEN

Treatment of Mycobacterium abscessus infection presents significant challenges, exacerbated by the emergence of macrolide-resistant strains that necessitate the use of multiple antimicrobials in combination and carry the potential for significant toxic effects. Select dual beta-lactam combinations, with or without beta-lactamase inhibitors, have been shown to be highly active in vitro. Herein, we describe a 6-year-old child with underlying mild bilateral lower lobe cylindrical bronchiectatic lung disease who developed pulmonary Mycobacterium abscessus infection and was treated with a multi-drug regimen including two ß-lactam antibiotics, achieving both early clinical and microbiological cure. This case highlights the potential benefit of dual ß-lactam therapy for the treatment of drug-resistant Mycobacterium abscessus infection.


Asunto(s)
Antibacterianos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , beta-Lactamas , Humanos , Mycobacterium abscessus/efectos de los fármacos , Niño , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , beta-Lactamas/uso terapéutico , beta-Lactamas/farmacología , Pruebas de Sensibilidad Microbiana , Masculino , Quimioterapia Combinada
19.
Antimicrob Agents Chemother ; 68(5): e0136323, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526050

RESUMEN

We subjected seven P. aeruginosa isolates to a 10-day serial passaging against five antipseudomonal agents to evaluate resistance levels post-exposure and putative resistance mechanisms in terminal mutants were analyzed by whole-genome sequencing analysis. Meropenem (mean, 38-fold increase), cefepime (14.4-fold), and piperacillin-tazobactam (52.9-fold) terminal mutants displayed high minimum inhibitory concentration (MIC) values compared to those obtained after exposure to ceftolozane-tazobactam (11.4-fold) and ceftazidime-avibactam (5.7-fold). Fewer isolates developed elevated MIC values for other ß-lactams and agents belonging to other classes when exposed to meropenem in comparison to other agents. Alterations in nalC and nalD, involved in the upregulation of the efflux pump system MexAB-OprM, were common and observed more frequently in isolates exposed to ceftazidime-avibactam and meropenem. These alterations, along with ones in mexR and amrR, provided resistance to most ß-lactams and levofloxacin but not imipenem. The second most common gene altered was mpl, which is involved in the recycling of the cell wall peptidoglycan. These alterations were mainly noted in isolates exposed to ceftolozane-tazobactam and piperacillin-tazobactam but also in one cefepime-exposed isolate. Alterations in other genes known to be involved in ß-lactam resistance (ftsI, oprD, phoP, pepA, and cplA) and multiple genes involved in lipopolysaccharide biosynthesis were also present. The data generated here suggest that there is a difference in the mechanisms selected for high-level resistance between newer ß-lactam/ß-lactamase inhibitor combinations and older agents. Nevertheless, the isolates exposed to all agents displayed elevated MIC values for other ß-lactams (except imipenem) and quinolones tested mainly due to alterations in the MexAB-OprM regulators that extrude these agents.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Ceftazidima , Meropenem , Pruebas de Sensibilidad Microbiana , Combinación Piperacilina y Tazobactam , Pseudomonas aeruginosa , Tazobactam , Inhibidores de beta-Lactamasas , beta-Lactamas , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Inhibidores de beta-Lactamasas/farmacología , Compuestos de Azabiciclo/farmacología , Meropenem/farmacología , Tazobactam/farmacología , Ceftazidima/farmacología , beta-Lactamas/farmacología , Combinación Piperacilina y Tazobactam/farmacología , Combinación de Medicamentos , Cefalosporinas/farmacología , Cefepima/farmacología , Humanos , Piperacilina/farmacología , Secuenciación Completa del Genoma , Farmacorresistencia Bacteriana Múltiple/genética
20.
Microbiology (Reading) ; 170(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661713

RESUMEN

Introduction. Leclercia adecarboxylata is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted L. adecarboxylata as an emerging pathogen harbouring virulence and resistance determinants.Gap statement. Little information exists on virulence and resistance determinants in L. adecarboxylata strains isolated from environmental, food, and clinical samples.Aim. To determine the presence of resistance and virulence determinants and plasmid features in L. adecarboxylata strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.Results. All strains tested showed resistance to ß-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of L. adecarboxylata, the resistance phenotype was only observed in 50 % of the strains; bla TEM was the most prevalent BLEE gene (70 %), while the quinolone qnrB gene was observed in 60 % of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80 % of the strains.Conclusions. L. adecarboxylata is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.


Asunto(s)
Antibacterianos , Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos , Factores de Virulencia , Antibacterianos/farmacología , Plásmidos/genética , Virulencia/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/patogenicidad , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/clasificación , Factores de Virulencia/genética , Humanos , Infecciones por Enterobacteriaceae/microbiología , Fenotipo , Farmacorresistencia Bacteriana/genética , Quinolonas/farmacología , beta-Lactamas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Microbiología de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA