Your browser doesn't support javascript.
loading
Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P.
Hughes, Laura D; Palmer, David S; Nigsch, Florian; Mitchell, John B O.
Afiliación
  • Hughes LD; Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
J Chem Inf Model ; 48(1): 220-32, 2008 Jan.
Article en En | MEDLINE | ID: mdl-18186622
This paper attempts to elucidate differences in QSPR models of aqueous solubility (Log S), melting point (Tm), and octanol-water partition coefficient (Log P), three properties of pharmaceutical interest. For all three properties, Support Vector Machine models using 2D and 3D descriptors calculated in the Molecular Operating Environment were the best models. Octanol-water partition coefficient was the easiest property to predict, as indicated by the RMSE of the external test set and the coefficient of determination (RMSE = 0.73, r2 = 0.87). Melting point prediction, on the other hand, was the most difficult (RMSE = 52.8 degrees C, r2 = 0.46), and Log S statistics were intermediate between melting point and Log P prediction (RMSE = 0.900, r2 = 0.79). The data imply that for all three properties the lack of measured values at the extremes is a significant source of error. This source, however, does not entirely explain the poor melting point prediction, and we suggest that deficiencies in descriptors used in melting point prediction contribute significantly to the prediction errors.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Relación Estructura-Actividad Cuantitativa / Temperatura de Transición / Modelos Químicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2008 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Relación Estructura-Actividad Cuantitativa / Temperatura de Transición / Modelos Químicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2008 Tipo del documento: Article País de afiliación: Reino Unido