Selecting useful groups of features in a connectionist framework.
IEEE Trans Neural Netw
; 19(3): 381-96, 2008 Mar.
Article
en En
| MEDLINE
| ID: mdl-18334359
Suppose for a given classification or function approximation (FA) problem data are collected using l sensors. From the output of the ith sensor, ni features are extracted, thereby generating p = sigma li = 1 ni features, so for the task we have X subset Rp as input data along with their corresponding outputs or class labels Y subset Rc. Here, we propose two connectionist schemes that can simultaneously select the useful sensors and learn the relation between X and Y. One scheme is based on the radial basis function (RBF) network and the other uses the multilayered perceptron (MLP) network. Both schemes are shown to possess the universal approximation property. Simulations show that the methods can detect the bad/derogatory groups of features online and can eliminate the effect of these bad features while doing the FA or classification task.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Procesamiento de Señales Asistido por Computador
/
Almacenamiento y Recuperación de la Información
/
Redes Neurales de la Computación
Límite:
Humans
Idioma:
En
Revista:
IEEE Trans Neural Netw
Asunto de la revista:
INFORMATICA MEDICA
Año:
2008
Tipo del documento:
Article
País de afiliación:
México