Your browser doesn't support javascript.
loading
Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition.
Sattin, Sarah R; Cleveland, Cory C; Hood, Eran; Reed, Sasha C; King, Andrew J; Schmidt, Steven K; Robeson, Michael S; Ascarrunz, Nataly; Nemergut, Diana R.
Afiliación
  • Sattin SR; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA.
J Microbiol ; 47(6): 673-81, 2009 Dec.
Article en En | MEDLINE | ID: mdl-20127458
Past work in recently deglaciated soils demonstrates that microbial communities undergo shifts prior to plant colonization. To date, most studies have focused on relatively 'long' chronosequences with the ability to sample plant-free sites over at least 50 years of development. However, some recently deglaciated soils feature rapid plant colonization and questions remain about the relative rate of change in the microbial community in the unvegetated soils of these chronosequences. Thus, we investigated the forelands of the Mendenhall Glacier near Juneau, AK, USA, where plants rapidly establish. We collected unvegetated samples representing soils that had been ice-free for 0, 1, 4, and 8 years. Total nitrogen (N) ranged from 0.00 approximately 0.14 mg/g soil, soil organic carbon pools ranged from 0.6 approximately 2.3 mg/g soil, and both decreased in concentration between the 0 and 4 yr soils. Biologically available phosphorus (P) and pH underwent similar dynamics. However, both pH and available P increased in the 8 yr soils. Nitrogen fixation was nearly undetectable in the most recently exposed soils, and increased in the 8 yr soils to approximately 5 ng N fixed/cm(2)/h, a trend that was matched by the activity of the soil N-cycling enzymes urease and beta-l,4-N-acetyl-glucosa-minidase. 16S rRNA gene clone libraries revealed no significant differences between the 0 and 8 yr soils; however, 8 yr soils featured the presence of cyanobacteria, a division wholly absent from the 0 yr soils. Taken together, our results suggest that microbes are consuming allochtonous organic matter sources in the most recently exposed soils. Once this carbon source is depleted, a competitive advantage may be ceded to microbes not reliant on in situ nutrient sources.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Biodiversidad País/Región como asunto: America do norte Idioma: En Revista: J Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Biodiversidad País/Región como asunto: America do norte Idioma: En Revista: J Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos