Your browser doesn't support javascript.
loading
Gremlin induces cell proliferation and extra cellular matrix accumulation in mouse mesangial cells exposed to high glucose via the ERK1/2 pathway.
Huang, Haixia; Huang, Haiying; Li, Ying; Liu, Maodong; Shi, Yonghong; Chi, Yanqing; Zhang, Tao.
Afiliación
  • Huang H; Department of Nephropathy, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
BMC Nephrol ; 14: 33, 2013 Feb 11.
Article en En | MEDLINE | ID: mdl-23394397
ABSTRACT

BACKGROUND:

Gremlin, a bone morphogenetic protein antagonist, plays an important role in the pathogenesis of diabetic nephropathy (DN). However, the specific molecular mechanism underlying Gremlin's involvement in DN has not been fully elucidated. In the present study, we investigated the role of Gremlin on cell proliferation and accumulation of extracellular matrix (ECM) in mouse mesangial cells (MMCs), and explored the relationship between Gremlin and the ERK1/2 pathway.

METHODS:

To determine expression of Gremlin in MMCs after high glucose (HG) exposure, Gremlin mRNA and protein expression were evaluated using real-time polymerase chain reaction and western blot analysis, respectively. To determine the role of Gremlin on cell proliferation and accumulation of ECM, western blot analysis was used to assess expression of pERK1/2, transforming growth factor-ß1 (TGF-ß1) and connective tissue growth factor (CTGF). Cell proliferation was examined by bromodeoxyuridine (BrdU) ELISA, and accumulation of collagen IV was measured using a radioimmunoassay. This enabled the relationship between Gremlin and ERK1/2 pathway activation to be investigated.

RESULTS:

HG exposure induced expression of Gremlin, which peaked 12 h after HG exposure. HG exposure alone or transfection of normal-glucose (NG) exposed MMCs with Gremlin plasmid (NG + P) increased cell proliferation. Transfection with Gremlin plasmid into MMCs previously exposed to HG (HG + P) significantly increased this HG-induced phenomenon. HG and NG + P conditions up-regulated protein levels of TGF-ß1, CTGF and collagen IV accumulation, while HG + P significantly increased levels of these further. Inhibition of Gremlin with Gremlin siRNA plasmid reversed the HG-induced phenomena. These data indicate that Gremlin can induce cell proliferation and accumulation of ECM in MMCs. HG also induced the activation of the ERK1/2 pathway, which peaked 24 h after HG exposure. HG and NG + P conditions induced overexpression of pERK1/2, whilst HG + P significantly induced levels further. Inhibition of Gremlin by Gremlin siRNA plasmid reversed the HG-induced phenomena. This indicates Gremlin can induce activation of the ERK1/2 pathway in MMCs.

CONCLUSION:

Culture of MMCs in the presence of HG up-regulates expression of Gremlin. Gremlin induces cell proliferation and accumulation of ECM in MMCs. and enhances activation of the ERK1/2 pathway.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sistema de Señalización de MAP Quinasas / Péptidos y Proteínas de Señalización Intercelular / Células Mesangiales / Matriz Extracelular / Glucosa Límite: Animals Idioma: En Revista: BMC Nephrol Asunto de la revista: NEFROLOGIA Año: 2013 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sistema de Señalización de MAP Quinasas / Péptidos y Proteínas de Señalización Intercelular / Células Mesangiales / Matriz Extracelular / Glucosa Límite: Animals Idioma: En Revista: BMC Nephrol Asunto de la revista: NEFROLOGIA Año: 2013 Tipo del documento: Article País de afiliación: China