Your browser doesn't support javascript.
loading
Mendelian randomization analysis with multiple genetic variants using summarized data.
Burgess, Stephen; Butterworth, Adam; Thompson, Simon G.
Afiliación
  • Burgess S; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
Genet Epidemiol ; 37(7): 658-65, 2013 Nov.
Article en En | MEDLINE | ID: mdl-24114802
Genome-wide association studies, which typically report regression coefficients summarizing the associations of many genetic variants with various traits, are potentially a powerful source of data for Mendelian randomization investigations. We demonstrate how such coefficients from multiple variants can be combined in a Mendelian randomization analysis to estimate the causal effect of a risk factor on an outcome. The bias and efficiency of estimates based on summarized data are compared to those based on individual-level data in simulation studies. We investigate the impact of gene-gene interactions, linkage disequilibrium, and 'weak instruments' on these estimates. Both an inverse-variance weighted average of variant-specific associations and a likelihood-based approach for summarized data give similar estimates and precision to the two-stage least squares method for individual-level data, even when there are gene-gene interactions. However, these summarized data methods overstate precision when variants are in linkage disequilibrium. If the P-value in a linear regression of the risk factor for each variant is less than 1×10⁻5, then weak instrument bias will be small. We use these methods to estimate the causal association of low-density lipoprotein cholesterol (LDL-C) on coronary artery disease using published data on five genetic variants. A 30% reduction in LDL-C is estimated to reduce coronary artery disease risk by 67% (95% CI: 54% to 76%). We conclude that Mendelian randomization investigations using summarized data from uncorrelated variants are similarly efficient to those using individual-level data, although the necessary assumptions cannot be so fully assessed.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Variación Genética / Análisis de la Aleatorización Mendeliana Tipo de estudio: Clinical_trials / Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2013 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Variación Genética / Análisis de la Aleatorización Mendeliana Tipo de estudio: Clinical_trials / Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genet Epidemiol Asunto de la revista: EPIDEMIOLOGIA / GENETICA MEDICA Año: 2013 Tipo del documento: Article País de afiliación: Reino Unido