Your browser doesn't support javascript.
loading
Set-valued dynamic treatment regimes for competing outcomes.
Laber, Eric B; Lizotte, Daniel J; Ferguson, Bradley.
Afiliación
  • Laber EB; Department of Statistics, NC State University, Raleigh, North Carolina 27695, U.S.A.
Biometrics ; 70(1): 53-61, 2014 Mar.
Article en En | MEDLINE | ID: mdl-24400912
Dynamic treatment regimes (DTRs) operationalize the clinical decision process as a sequence of functions, one for each clinical decision, where each function maps up-to-date patient information to a single recommended treatment. Current methods for estimating optimal DTRs, for example Q-learning, require the specification of a single outcome by which the "goodness" of competing dynamic treatment regimes is measured. However, this is an over-simplification of the goal of clinical decision making, which aims to balance several potentially competing outcomes, for example, symptom relief and side-effect burden. When there are competing outcomes and patients do not know or cannot communicate their preferences, formation of a single composite outcome that correctly balances the competing outcomes is not possible. This problem also occurs when patient preferences evolve over time. We propose a method for constructing DTRs that accommodates competing outcomes by recommending sets of treatments at each decision point. Formally, we construct a sequence of set-valued functions that take as input up-to-date patient information and give as output a recommended subset of the possible treatments. For a given patient history, the recommended set of treatments contains all treatments that produce non-inferior outcome vectors. Constructing these set-valued functions requires solving a non-trivial enumeration problem. We offer an exact enumeration algorithm by recasting the problem as a linear mixed integer program. The proposed methods are illustrated using data from the CATIE schizophrenia study.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Protocolos Clínicos / Ensayos Clínicos como Asunto / Modelos Estadísticos / Resultado del Tratamiento / Toma de Decisiones Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Biometrics Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Protocolos Clínicos / Ensayos Clínicos como Asunto / Modelos Estadísticos / Resultado del Tratamiento / Toma de Decisiones Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Biometrics Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos