Your browser doesn't support javascript.
loading
GASOLINE: a Greedy And Stochastic algorithm for optimal Local multiple alignment of Interaction NEtworks.
Micale, Giovanni; Pulvirenti, Alfredo; Giugno, Rosalba; Ferro, Alfredo.
Afiliación
  • Micale G; Department of Computer Science, University of Pisa, Pisa, Italy.
  • Pulvirenti A; Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy.
  • Giugno R; Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy.
  • Ferro A; Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy.
PLoS One ; 9(6): e98750, 2014.
Article en En | MEDLINE | ID: mdl-24911103
The analysis of structure and dynamics of biological networks plays a central role in understanding the intrinsic complexity of biological systems. Biological networks have been considered a suitable formalism to extend evolutionary and comparative biology. In this paper we present GASOLINE, an algorithm for multiple local network alignment based on statistical iterative sampling in connection to a greedy strategy. GASOLINE overcomes the limits of current approaches by producing biologically significant alignments within a feasible running time, even for very large input instances. The method has been extensively tested on a database of real and synthetic biological networks. A comprehensive comparison with state-of-the art algorithms clearly shows that GASOLINE yields the best results in terms of both reliability of alignments and running time on real biological networks and results comparable in terms of quality of alignments on synthetic networks. GASOLINE has been developed in Java, and is available, along with all the computed alignments, at the following URL: http://ferrolab.dmi.unict.it/gasoline/gasoline.html.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Biología Computacional / Mapeo de Interacción de Proteínas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Biología Computacional / Mapeo de Interacción de Proteínas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Italia