Clematichinenoside inhibits VCAM-1 and ICAM-1 expression in TNF-α-treated endothelial cells via NADPH oxidase-dependent IκB kinase/NF-κB pathway.
Free Radic Biol Med
; 78: 190-201, 2015 Jan.
Article
en En
| MEDLINE
| ID: mdl-25463279
Proinflammatory cytokine TNF-α-induced adhesion of leukocytes to endothelial cells plays a critical role in the early stage of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Thus, compounds that mediate intracellular redox status and regulate transcription factors are of great therapeutic interest. Clematichinenoside (AR), a triterpene saponin isolated from the root of Clematis chinensis Osbeck, was previously demonstrated to have anti-inflammatory and antioxidative properties. However, little is known about the exact mechanism underlying these actions. Thus we performed a detailed study on its effect on leukocytes-endothelial cells adhesion with TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) and cell-free systems. First, we found that AR reduced TNF-α-induced VCAM-1 and ICAM-1 expression and their promoter activity, inhibited translocation of p65 and phosphorylation of IκBα, suppressed IκB kinase-ß (IKK-ß) activity, lowered O2(â-) and H2O2 levels, tackled p47(phox) translocation, and decreased NOX4 NADPH oxidase expression. Second, we showed that AR exhibited no direct free radical scavenging ability in cell-free systems at concentrations that were used in intact cells. Besides, AR had no direct effect on the activity of IKK-ß that was extracted from TNF-α-stimulated HUVECs. We also found that p47 translocation, NOX4 expression, and reactive oxygen species (ROS) levels were up-regulated before IκB phosphorylation in TNF-α-induced HUVECs. Moreover, TNF-α-enhanced IKK-ß activity was also inhibited by (polyethylene glycol) PEG-catalase, N-acetylcysteine (NAC), and vitamin E. In conclusion, these results suggest that AR reduces VCAM-1 and ICAM-1 expression through NADPH oxidase-dependent IKK/NF-κB pathways in TNF-α-induced HUVECs, which finally suppress monocyte-HUVECs adhesion. This compound is potentially beneficial for early-stage atherosclerosis.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Saponinas
/
FN-kappa B
/
Factor de Necrosis Tumoral alfa
/
Molécula 1 de Adhesión Intercelular
/
Molécula 1 de Adhesión Celular Vascular
/
NADPH Oxidasas
/
Quinasa I-kappa B
/
Células Endoteliales de la Vena Umbilical Humana
Límite:
Humans
Idioma:
En
Revista:
Free Radic Biol Med
Asunto de la revista:
BIOQUIMICA
/
MEDICINA
Año:
2015
Tipo del documento:
Article
País de afiliación:
China