Your browser doesn't support javascript.
loading
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J.
Afiliación
  • Boehme SC; †TU Delft, Chemical Engineering, Optoelectronic Materials, Julianalaan 136, 2628 BL Delft, The Netherlands.
  • Azpiroz JM; §Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20018 Donostia, Euskadi, Spain.
  • Aulin YV; †TU Delft, Chemical Engineering, Optoelectronic Materials, Julianalaan 136, 2628 BL Delft, The Netherlands.
  • Grozema FC; †TU Delft, Chemical Engineering, Optoelectronic Materials, Julianalaan 136, 2628 BL Delft, The Netherlands.
  • Vanmaekelbergh D; ‡Utrecht University, Debye Institute, Condensed Matter and Interfaces, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
  • Siebbeles LD; †TU Delft, Chemical Engineering, Optoelectronic Materials, Julianalaan 136, 2628 BL Delft, The Netherlands.
  • Infante I; §Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20018 Donostia, Euskadi, Spain.
  • Houtepen AJ; †TU Delft, Chemical Engineering, Optoelectronic Materials, Julianalaan 136, 2628 BL Delft, The Netherlands.
Nano Lett ; 15(5): 3056-66, 2015 May 13.
Article en En | MEDLINE | ID: mdl-25853555
ABSTRACT
Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2015 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2015 Tipo del documento: Article País de afiliación: Países Bajos