Your browser doesn't support javascript.
loading
Systems-Wide High-Dimensional Data Acquisition and Informatics Using Structural Mass Spectrometry Strategies.
Sherrod, Stacy D; McLean, John A.
Afiliación
  • Sherrod SD; Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN.
  • McLean JA; Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN. john.a.mclean@vanderbilt.edu.
Clin Chem ; 62(1): 77-83, 2016 Jan.
Article en En | MEDLINE | ID: mdl-26453699
BACKGROUND: Untargeted multiomics data sets are obtained for samples in systems, synthetic, and chemical biology by integrating chromatographic separations with ion mobility-mass spectrometry (IM-MS) analysis. The data sets are interrogated using bioinformatics strategies to organize the data for identification prioritization. CONTENT: The use of big data approaches for data mining of massive data sets in systems-wide analyses is presented. Untargeted biological data across multiomics dimensions are obtained using a variety of chromatography strategies with structural MS. Separation timescales for different techniques and the resulting data deluge when combined with IM-MS are presented. Data mining self-organizing map strategies are used to rapidly filter the data, highlighting those features describing uniqueness to the query. Examples are provided in longitudinal analyses in synthetic biology and human liver exposure to acetaminophen, and in chemical biology for natural product discovery from bacterial biomes. CONCLUSIONS: Matching the separation timescales of different forms of chromatography with IM-MS provides sufficient multiomics selectivity to perform untargeted systems-wide analyses. New data mining strategies provide a means for rapidly interrogating these data sets for feature prioritization and discovery in a range of applications in systems, synthetic, and chemical biology.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Espectrometría de Masas / Productos Biológicos / Biología Computacional / Acetaminofén Límite: Humans Idioma: En Revista: Clin Chem Asunto de la revista: QUIMICA CLINICA Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Espectrometría de Masas / Productos Biológicos / Biología Computacional / Acetaminofén Límite: Humans Idioma: En Revista: Clin Chem Asunto de la revista: QUIMICA CLINICA Año: 2016 Tipo del documento: Article