Block of CDK1-dependent polyadenosine elongation of Cyclin B mRNA in metaphase-i-arrested starfish oocytes is released by intracellular pH elevation upon spawning.
Mol Reprod Dev
; 83(1): 79-87, 2016 Jan.
Article
en En
| MEDLINE
| ID: mdl-26632330
Meiotic progression requires the translation of maternal mRNAs in a strict temporal order. In isolated animal oocytes, translation of maternal mRNAs containing a cytoplasmic polyadenylation element (CPE), such as cyclin B, is activated by in vitro stimulation of meiotic resumption which induces phosphorylation of CPEB (CPE-binding protein) and elongation of their polyadenosine (poly(A)) tails; whether or not this model can be applied in vivo to oocytes arrested at metaphase of meiosis I in ovaries is unknown. In this study, we found that active CDK1 (cyclin-dependent kinase 1) phosphorylated CPEB in ovarian oocytes arrested at metphase I in the starfish body cavity, but phosphorylation of CPEB was not sufficient for elongation of cyclin B poly(A) tails. Immediately after spawning, however, mRNA was polyadenylated, suggesting that an increase in intracellular pH (pHi ) upon spawning triggers the elongation of poly(A) tails. Using a cell-free system made from maturing oocytes at metaphase I, we demonstrated that polyadenylation was indeed suppressed at pH below 7.0. These results suggest that a pH-sensitive process, functioning after CPEB phosphorylation, is blocked under physiologically low pHi (<7.0) in metaphase-I-arrested oocytes. The increase in pHi (>7.0) that occurs after spawning triggers polyadenylation of cyclin B mRNA and progression into meiosis II.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Oocitos
/
Estrellas de Mar
/
Proteína Quinasa CDC2
/
Ciclina B
/
Poliadenilación
/
Metafase
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Mol Reprod Dev
Asunto de la revista:
BIOLOGIA MOLECULAR
/
MEDICINA REPRODUTIVA
Año:
2016
Tipo del documento:
Article
País de afiliación:
Japón