Your browser doesn't support javascript.
loading
GeneValidator: identify problems with protein-coding gene predictions.
Dragan, Monica-Andreea; Moghul, Ismail; Priyam, Anurag; Bustos, Claudio; Wurm, Yannick.
Afiliación
  • Dragan MA; Department of Computer Science, ETH Zürich, Zürich, Switzerland.
  • Moghul I; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK and.
  • Priyam A; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK and.
  • Bustos C; Departamento de Psiquiatría y Salud Mental, University of Concepción, Concepción, Chile.
  • Wurm Y; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK and.
Bioinformatics ; 32(10): 1559-61, 2016 05 15.
Article en En | MEDLINE | ID: mdl-26787666
UNLABELLED: : Genomes of emerging model organisms are now being sequenced at very low cost. However, obtaining accurate gene predictions remains challenging: even the best gene prediction algorithms make substantial errors and can jeopardize subsequent analyses. Therefore, many predicted genes must be time-consumingly visually inspected and manually curated. We developed GeneValidator (GV) to automatically identify problematic gene predictions and to aid manual curation. For each gene, GV performs multiple analyses based on comparisons to gene sequences from large databases. The resulting report identifies problematic gene predictions and includes extensive statistics and graphs for each prediction to guide manual curation efforts. GV thus accelerates and enhances the work of biocurators and researchers who need accurate gene predictions from newly sequenced genomes. AVAILABILITY AND IMPLEMENTATION: GV can be used through a web interface or in the command-line. GV is open-source (AGPL), available at https://wurmlab.github.io/tools/genevalidator CONTACT: : y.wurm@qmul.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Proteínas / Bases de Datos Genéticas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Proteínas / Bases de Datos Genéticas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Suiza