Optimal Experiment Design for Monoexponential Model Fitting: Application to Apparent Diffusion Coefficient Imaging.
Biomed Res Int
; 2015: 138060, 2015.
Article
en En
| MEDLINE
| ID: mdl-26839880
The monoexponential model is widely used in quantitative biomedical imaging. Notable applications include apparent diffusion coefficient (ADC) imaging and pharmacokinetics. The application of ADC imaging to the detection of malignant tissue has in turn prompted several studies concerning optimal experiment design for monoexponential model fitting. In this paper, we propose a new experiment design method that is based on minimizing the determinant of the covariance matrix of the estimated parameters (D-optimal design). In contrast to previous methods, D-optimal design is independent of the imaged quantities. Applying this method to ADC imaging, we demonstrate its steady performance for the whole range of input variables (imaged parameters, number of measurements, and range of b-values). Using Monte Carlo simulations we show that the D-optimal design outperforms existing experiment design methods in terms of accuracy and precision of the estimated parameters.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Imagen de Difusión por Resonancia Magnética
/
Modelos Teóricos
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Biomed Res Int
Año:
2015
Tipo del documento:
Article
País de afiliación:
Suecia