Your browser doesn't support javascript.
loading
Extracting duration information in a picture category decoding task using hidden Markov Models.
Pfeiffer, Tim; Heinze, Nicolai; Frysch, Robert; Deouell, Leon Y; Schoenfeld, Mircea A; Knight, Robert T; Rose, Georg.
Afiliación
  • Pfeiffer T; Institute for Medical Engineering, Otto-von-Guericke-University Magdeburg, Germany.
J Neural Eng ; 13(2): 026010, 2016 Apr.
Article en En | MEDLINE | ID: mdl-26859831
OBJECTIVE: Adapting classifiers for the purpose of brain signal decoding is a major challenge in brain-computer-interface (BCI) research. In a previous study we showed in principle that hidden Markov models (HMM) are a suitable alternative to the well-studied static classifiers. However, since we investigated a rather straightforward task, advantages from modeling of the signal could not be assessed. APPROACH: Here, we investigate a more complex data set in order to find out to what extent HMMs, as a dynamic classifier, can provide useful additional information. We show for a visual decoding problem that besides category information, HMMs can simultaneously decode picture duration without an additional training required. This decoding is based on a strong correlation that we found between picture duration and the behavior of the Viterbi paths. MAIN RESULTS: Decoding accuracies of up to 80% could be obtained for category and duration decoding with a single classifier trained on category information only. SIGNIFICANCE: The extraction of multiple types of information using a single classifier enables the processing of more complex problems, while preserving good training results even on small databases. Therefore, it provides a convenient framework for online real-life BCI utilizations.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Reconocimiento Visual de Modelos / Estimulación Luminosa / Desempeño Psicomotor / Encéfalo / Cadenas de Markov / Almacenamiento y Recuperación de la Información Tipo de estudio: Clinical_trials / Health_economic_evaluation Límite: Adult / Humans / Male Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Reconocimiento Visual de Modelos / Estimulación Luminosa / Desempeño Psicomotor / Encéfalo / Cadenas de Markov / Almacenamiento y Recuperación de la Información Tipo de estudio: Clinical_trials / Health_economic_evaluation Límite: Adult / Humans / Male Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Alemania