Binary-copolymer system base on low-density lipoprotein-coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug.
J Biomed Mater Res B Appl Biomater
; 105(5): 1114-1125, 2017 07.
Article
en En
| MEDLINE
| ID: mdl-27008163
The development of effective and stable carriers of small interfering RNA (siRNA) is important for treating cancer with multidrug resistance (MDR). We developed a new gene and drug co-delivery system and checked its characteristics. Low-density lipoprotein (LDL) was coupled with N-succinyl chitosan (NSC) Lipoic acid (LA) micelles and co-delivered MDR1 siRNA and paclitaxel (PTX-siRNA/LDL-NSC-LA) to enhance antitumor effects by silencing the MDR gene of tumors (Li et al., Adv Mater 2014;26:8217-8224). In our study, we developed a new type of containing paclitaxel-loaded micelles and siRNA-loaded LDL nanoparticle. This "binary polymer" is pH and reduction dual-sensitive core-crosslinked micelles. PTX-siRNA/LDL-NSC-LA had an average particle size of (171.6 ± 6.42) nm, entrapment efficiency of (93.92 ± 1.06) %, and drug-loading amount of (12.35% ± 0.87) %. In vitro, MCF-7 cells, high expressed LDL receptor, were more sensitive to this delivery system than to taxol® and cell activity was inhibited significantly. Fluorescence microscopy showed that PTX-siRNA/LDL-NSC-LA was uptaken very conveniently and played a key role in antitumor activity. PTX-siRNA/LDL-NSC-LA protected the siRNA from degradation by macrophage phagocytosis and evidently down-regulated the level of mdr1 mRNA as well as the expression of P-gp. We tested the target ability of PTX-siRNA/LDL-NSC-LA in vivo in tumor-bearing nude mice. Results showed that this system could directly deliver siRNA and PTX to cancer cells. Thus, new co-delivering siRNA and antitumor drugs should be explored for solving MDR in cancer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1114-1125, 2017.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Ácido Tióctico
/
Paclitaxel
/
Técnicas de Transferencia de Gen
/
ARN Interferente Pequeño
/
Quitosano
/
Lipoproteínas LDL
/
Micelas
/
Proteínas de Neoplasias
/
Neoplasias Experimentales
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Female
/
Humans
Idioma:
En
Revista:
J Biomed Mater Res B Appl Biomater
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2017
Tipo del documento:
Article