Your browser doesn't support javascript.
loading
Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents.
Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C.
Afiliación
  • Chowdhury L; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Croft CJ; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Goel S; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Zaman N; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Tai AC; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Walch EM; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Smith K; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Page A; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Shea KM; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Hall CD; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Jishkariani D; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Pillai GG; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
  • Hall AC; Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of
J Pharmacol Exp Ther ; 357(3): 570-9, 2016 06.
Article en En | MEDLINE | ID: mdl-27029583
GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1ß3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 µM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 µM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the ß3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Receptores de GABA-A / Anestésicos Generales / Ciclohexanoles Límite: Humans Idioma: En Revista: J Pharmacol Exp Ther Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Receptores de GABA-A / Anestésicos Generales / Ciclohexanoles Límite: Humans Idioma: En Revista: J Pharmacol Exp Ther Año: 2016 Tipo del documento: Article