Your browser doesn't support javascript.
loading
MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data.
Fick, Rutger H J; Wassermann, Demian; Caruyer, Emmanuel; Deriche, Rachid.
Afiliación
  • Fick RHJ; Athena Project-Team, Inria Sophia Antipolis, Méditerranée, France. Electronic address: rutger.fick@inria.fr.
  • Wassermann D; Athena Project-Team, Inria Sophia Antipolis, Méditerranée, France.
  • Caruyer E; VisAGeS Research Unit, IRISA, CNRS (UMR 6074), Rennes, France.
  • Deriche R; Athena Project-Team, Inria Sophia Antipolis, Méditerranée, France.
Neuroimage ; 134: 365-385, 2016 07 01.
Article en En | MEDLINE | ID: mdl-27043358
The recovery of microstructure-related features of the brain's white matter is a current challenge in diffusion MRI. To robustly estimate these important features from multi-shell diffusion MRI data, we propose to analytically regularize the coefficient estimation of the Mean Apparent Propagator (MAP)-MRI method using the norm of the Laplacian of the reconstructed signal. We first compare our approach, which we call MAPL, with competing, state-of-the-art functional basis approaches. We show that it outperforms the original MAP-MRI implementation and the recently proposed modified Spherical Polar Fourier (mSPF) basis with respect to signal fitting and reconstruction of the Ensemble Average Propagator (EAP) and Orientation Distribution Function (ODF) in noisy, sparsely sampled data of a physical phantom with reference gold standard data. Then, to reduce the variance of parameter estimation using multi-compartment tissue models, we propose to use MAPL's signal fitting and extrapolation as a preprocessing step. We study the effect of MAPL on the estimation of axon diameter using a simplified Axcaliber model and axonal dispersion using the Neurite Orientation Dispersion and Density Imaging (NODDI) model. We show the positive effect of using it as a preprocessing step in estimating and reducing the variances of these parameters in the Corpus Callosum of six different subjects of the MGH Human Connectome Project. Finally, we correlate the estimated axon diameter, dispersion and restricted volume fractions with Fractional Anisotropy (FA) and clearly show that changes in FA significantly correlate with changes in all estimated parameters. Overall, we illustrate the potential of using a well-regularized functional basis together with multi-compartment approaches to recover important microstructure tissue parameters with much less variability, thus contributing to the challenge of better understanding microstructure-related features of the brain's white matter.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Axones / Algoritmos / Interpretación de Imagen Asistida por Computador / Cuerpo Calloso / Imagen de Difusión Tensora Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Axones / Algoritmos / Interpretación de Imagen Asistida por Computador / Cuerpo Calloso / Imagen de Difusión Tensora Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article