Your browser doesn't support javascript.
loading
Effects of power ultrasound on oxidation and structure of beef proteins during curing processing.
Kang, Da-Cheng; Zou, Yun-He; Cheng, Yu-Ping; Xing, Lu-Juan; Zhou, Guang-Hong; Zhang, Wan-Gang.
Afiliación
  • Kang DC; Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
  • Zou YH; Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
  • Cheng YP; Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
  • Xing LJ; Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
  • Zhou GH; Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
  • Zhang WG; Key Lab of Meat Processing and Quality Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address: wangang.zhang@njau.edu.c
Ultrason Sonochem ; 33: 47-53, 2016 11.
Article en En | MEDLINE | ID: mdl-27245955
ABSTRACT
The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96Wcm(-2)) and treatment time (30, 60, 90 and 120min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20kHz and fresh beef at 48h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P<0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P<0.05). SDS-PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in ß-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ultrasonido / Proteínas / Carne Roja Límite: Animals Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ultrasonido / Proteínas / Carne Roja Límite: Animals Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article País de afiliación: China