Your browser doesn't support javascript.
loading
Head and Tibial Acceleration as a Function of Stride Frequency and Visual Feedback during Running.
Busa, Michael A; Lim, Jongil; van Emmerik, Richard E A; Hamill, Joseph.
Afiliación
  • Busa MA; Biomechanics Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.
  • Lim J; Motor Control Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.
  • van Emmerik RE; Biomechanics Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.
  • Hamill J; Motor Control Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.
PLoS One ; 11(6): e0157297, 2016.
Article en En | MEDLINE | ID: mdl-27271850
ABSTRACT
Individuals regulate the transmission of shock to the head during running at different stride frequencies although the consequences of this on head-gaze stability remain unclear. The purpose of this study was to examine if providing individuals with visual feedback of their head-gaze orientation impacts tibial and head accelerations, shock attenuation and head-gaze motion during preferred speed running at different stride frequencies. Fifteen strides from twelve recreational runners running on a treadmill at their preferred speed were collected during five stride frequencies (preferred, ±10% and ±20% of preferred) in two visual task conditions (with and without real-time visual feedback of head-gaze orientation). The main outcome measures were tibial and head peak accelerations assessed in the time and frequency domains, shock attenuation from tibia to head, and the magnitude and velocity of head-gaze motion. Decreasing stride frequency resulted in greater vertical accelerations of the tibia (p<0.01) during early stance and at the head (p<0.01) during early and late stance; however, for the impact portion the increase in head acceleration was only observed for the slowest stride frequency condition. Visual feedback resulted in reduced head acceleration magnitude (p<0.01) and integrated power spectral density in the frequency domain (p<0.01) in late stance, as well as overall of head-gaze motion (p<0.01). When running at preferred speed individuals were able to stabilize head acceleration within a wide range of stride frequencies; only at a stride frequency 20% below preferred did head acceleration increase. Furthermore, impact accelerations of the head and tibia appear to be solely a function of stride frequency as no differences were observed between feedback conditions. Increased visual task demands through head gaze feedback resulted in reductions in head accelerations in the active portion of stance and increased head-gaze stability.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Carrera / Tibia / Retroalimentación Sensorial / Cabeza Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Carrera / Tibia / Retroalimentación Sensorial / Cabeza Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos