Your browser doesn't support javascript.
loading
Evaluation of the analgesic effects of ammoxetine, a novel potent serotonin and norepinephrine reuptake inhibitor.
Zhang, Ting-Ting; Xue, Rui; Zhu, Lei; Li, Juan; Fan, Qiong-Yin; Zhong, Bo-Hua; Li, Yun-Feng; Ye, Cai-Ying; Zhang, You-Zhi.
Afiliación
  • Zhang TT; Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
  • Xue R; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
  • Zhu L; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
  • Li J; Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
  • Fan QY; Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
  • Zhong BH; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
  • Li YF; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
  • Ye CY; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
  • Zhang YZ; Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
Acta Pharmacol Sin ; 37(9): 1154-65, 2016 Sep.
Article en En | MEDLINE | ID: mdl-27424654
AIM: The selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitors (SNRIs) are commonly used for the treatment of neuropathic pain and fibromyalgia. Ammoxetine ((±)-3-(benzo[d] [1,3]dioxol-4-yloxy)-N-methyl-3-(thiophen-2-yl)propan-1-amine) has been identified as a novel potent SNRI. In this study, we evaluated the acute analgesic properties of ammoxetine in different animal models of pain, and examined the involvement of monoamines in its analgesic actions. METHODS: The analgesic effects of ammoxetine were assayed using models of acetic acid- and formalin-induced pain in mice, neuropathic pain induced by sciatic nerve injury (SNI), chronic constriction injury (CCI) and reserpine-induced fibromyalgia pain in rats. The contents of 5-HT and NE in brain regions of fibromyalgia rats were measured using HPLC-ECD. In all the experiments, duloxetine was used as a positive control drug. RESULTS: Oral administration of ammoxetine (0.625-10 mg/kg) or duloxetine (2.5-40 mg/kg) dose-dependently decreased the number of acetic acid-induced writhing and formalin-induced first phase and second phase paw licking time in mice. Oral administration of ammoxetine (2.5-10 mg/kg) or duloxetine (10 mg/kg) alleviated mechanical allodynia in SNI and CCI rats and thermal hyperalgesia in CCI rats. The antiallodynic effect of ammoxetine in CCI rats was abolished by pretreatment with para-chlorophenylalanine methyl ester hydrochloride (PCPA, a 5-HT synthesis inhibitor) or α-methyl-para-tyrosine methylester (AMPT, a catecholamine synthesis inhibitor). Oral administration of ammoxetine (30 mg/kg) or duloxetine (50 mg/kg) significantly attenuated tactile allodynia in rats with reserpine-induced fibromyalgia. In the fibromyalgia rats, administration of ammoxetine (10, 30 mg/kg) or duloxetine (30, 50 mg/kg) dose-dependently increased the levels of 5-HT and NE, and decreased the metabolite ratio of 5-HT (5-HIAA/5-HT) in the spinal cord, hypothalamus, thalamus and prefrontal cortex. CONCLUSION: Ammoxetine effectively alleviates inflammatory, continuous, neuropathic and fibromyalgia-related pain in animal models, which can be attributed to enhanced neurotransmission of 5-HT and NE in the descending inhibitory systems.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Propilaminas / Fibromialgia / Umbral del Dolor / Analgésicos no Narcóticos / Neuropatía Ciática / Benzodioxoles / Inhibidores de Captación de Serotonina y Norepinefrina / Hiperalgesia Límite: Animals Idioma: En Revista: Acta Pharmacol Sin Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Propilaminas / Fibromialgia / Umbral del Dolor / Analgésicos no Narcóticos / Neuropatía Ciática / Benzodioxoles / Inhibidores de Captación de Serotonina y Norepinefrina / Hiperalgesia Límite: Animals Idioma: En Revista: Acta Pharmacol Sin Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: China