Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction.
Nano Lett
; 16(9): 5792-7, 2016 09 14.
Article
en En
| MEDLINE
| ID: mdl-27575518
The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic devices, it is necessary to control and manipulate the charge density in these valleys, resulting in valley polarization. While this has been demonstrated using optical excitation, generation of valley polarization in electronic devices without optical excitation remains difficult. Here, we demonstrate spin injection from a ferromagnetic electrode into a heterojunction based on monolayers of WSe2 and MoS2 and lateral transport of spin-polarized holes within the WSe2 layer. The resulting valley polarization leads to circularly polarized light emission that can be tuned using an external magnetic field. This demonstration of spin injection and magnetoelectronic control over valley polarization provides a new opportunity for realizing combined spin and valleytronic devices based on spin-valley locking in semiconducting TMDCs.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2016
Tipo del documento:
Article