Your browser doesn't support javascript.
loading
Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide.
Pushparaj, Suraj Shiv Charan; Jensen, Nicholai Daugaard; Forano, Claude; Rees, Gregory J; Prevot, Vanessa; Hanna, John V; Ravnsbæk, Dorthe B; Bjerring, Morten; Nielsen, Ulla Gro.
Afiliación
  • Pushparaj SS; Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark.
  • Jensen ND; Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark.
  • Forano C; Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France.
  • Rees GJ; CNRS, UMR 6296 , F-63178 Aubiere, France.
  • Prevot V; Department of Physics, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K.
  • Hanna JV; Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal , BP 10448, F-63000 Clermont-Ferrand, France.
  • Ravnsbæk DB; CNRS, UMR 6296 , F-63178 Aubiere, France.
  • Bjerring M; Department of Physics, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K.
  • Nielsen UG; Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark.
Inorg Chem ; 55(18): 9306-15, 2016 Sep 19.
Article en En | MEDLINE | ID: mdl-27598036
ABSTRACT
Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2016 Tipo del documento: Article País de afiliación: Dinamarca

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2016 Tipo del documento: Article País de afiliación: Dinamarca