Your browser doesn't support javascript.
loading
Proposed clinical internal carotid artery classification system.
Abdulrauf, Saleem I; Ashour, Ahmed M; Marvin, Eric; Coppens, Jeroen; Kang, Brian; Hsieh, Tze Yu Yeh; Nery, Breno; Penanes, Juan R; Alsahlawi, Aysha K; Moore, Shawn; Abou Al-Shaar, Hussam; Kemp, Joanna; Chawla, Kanika; Sujijantarat, Nanthiya; Najeeb, Alaa; Parkar, Nadeem; Shetty, Vilaas; Vafaie, Tina; Antisdel, Jastin; Mikulec, Tony A; Edgell, Randall; Lebovitz, Jonathan; Pierson, Matt; Pires de Aguiar, Paulo Henrique; Buchanan, Paula; Di Cosola, Angela; Stevens, George.
Afiliación
  • Abdulrauf SI; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Ashour AM; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Marvin E; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Coppens J; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Kang B; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Hsieh TY; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Nery B; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Penanes JR; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Alsahlawi AK; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Moore S; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Abou Al-Shaar H; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Kemp J; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Chawla K; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Sujijantarat N; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Najeeb A; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Parkar N; Department of Radiology, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Shetty V; Department of Radiology, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Vafaie T; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Antisdel J; Department of Head and Neck Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Mikulec TA; Department of Head and Neck Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Edgell R; Department of Neurology, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Lebovitz J; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Pierson M; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Pires de Aguiar PH; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Buchanan P; Center for Outcomes Research, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Di Cosola A; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
  • Stevens G; Department of Neurological Surgery, Saint Louis University, Saint Louis, Missouri, United States of America.
J Craniovertebr Junction Spine ; 7(3): 161-70, 2016.
Article en En | MEDLINE | ID: mdl-27630478
INTRODUCTION: Numerical classification systems for the internal carotid artery (ICA) are available, but modifications have added confusion to the numerical systems. Furthermore, previous classifications may not be applicable uniformly to microsurgical and endoscopic procedures. The purpose of this study was to develop a clinically useful classification system. MATERIALS AND METHODS: We performed cadaver dissections of the ICA in 5 heads (10 sides) and evaluated 648 internal carotid arteries with computed tomography angiography. We identified specific anatomic landmarks to define the beginning and end of each ICA segment. RESULTS: The ICA was classified into eight segments based on the cadaver and imaging findings: (1) Cervical segment; (2) cochlear segment (ascending segment of the ICA in the temporal bone) (relation of the start of this segment to the base of the styloid process: Above, 425 sides [80%]; below, 2 sides [0.4%]; at same level, 107 sides [20%]; P < 0.0001) (relation of cochlea to ICA: Posterior, 501 sides [85%]; posteromedial, 84 sides [14%]; P < 0.0001); (3) petrous segment (horizontal segment of ICA in the temporal bone) starting at the crossing of the eustachian tube superolateral to the ICA turn in all 10 samples; (4) Gasserian-Clival segment (ascending segment of ICA in the cavernous sinus) starting at the petrolingual ligament (PLL) (relation to vidian canal on imaging: At same level, 360 sides [63%]; below, 154 sides [27%]; above, 53 sides [9%]; P < 0.0001); in this segment, the ICA projected medially toward the clivus in 275 sides (52%) or parallel to the clivus with no deviation in 256 sides (48%; P < 0.0001); (5) sellar segment (medial loop of ICA in the cavernous sinus) starting at the takeoff of the meningeal hypophyseal trunk (ICA was medial into the sella in 271 cases [46%], lateral without touching the sella in 127 cases [23%], and abutting the sella in 182 cases [31%]; P < 0.0001); (6) sphenoid segment (lateral loop of ICA within the cavernous sinus) starting at the crossing of the fourth cranial nerve on the lateral aspect of the cavernous ICA and located directly lateral to the sphenoid sinus; (7) ring segment (ICA between the 2 dural rings) starting at the crossing of the third cranial nerve on the lateral aspect of the ICA; (8) cisternal segment starting at the distal dural ring. CONCLUSIONS: The classification may be applied uniformly to all skull base surgical approaches including lateral microsurgical and ventral endoscopic approaches, obviating the need for 2 separate classification systems. The classification allows extrapolation of relevant clinical information because each named segment may indicate potential surgical risk to specific structures.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Craniovertebr Junction Spine Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Craniovertebr Junction Spine Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos