Your browser doesn't support javascript.
loading
Insights from the Shell Proteome: Biomineralization to Adaptation.
Arivalagan, Jaison; Yarra, Tejaswi; Marie, Benjamin; Sleight, Victoria A; Duvernois-Berthet, Evelyne; Clark, Melody S; Marie, Arul; Berland, Sophie.
Afiliación
  • Arivalagan J; UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.
  • Yarra T; UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.
  • Marie B; British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, United Kingdom.
  • Sleight VA; University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, United Kingdom.
  • Duvernois-Berthet E; UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.
  • Clark MS; British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, United Kingdom.
  • Marie A; UMR 7221 CNRS/MNHN Evolution des Régulations Endocriniennes, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.
  • Berland S; British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, United Kingdom.
Mol Biol Evol ; 34(1): 66-77, 2017 01.
Article en En | MEDLINE | ID: mdl-27744410
ABSTRACT
Bivalves have evolved a range of complex shell forming mechanisms that are reflected by their incredible diversity in shell mineralogy and microstructures. A suite of proteins exported to the shell matrix space plays a significant role in controlling these features, in addition to underpinning some of the physical properties of the shell itself. Although, there is a general consensus that a minimum basic protein tool kit is required for shell construction, to date, this remains undefined. In this study, the shell matrix proteins (SMPs) of four highly divergent bivalves (The Pacific oyster, Crassostrea gigas; the blue mussel, Mytilus edulis; the clam, Mya truncata, and the king scallop, Pecten maximus) were analyzed in an identical fashion using proteomics pipeline. This enabled us to identify the critical elements of a "basic tool kit" for calcification processes, which were conserved across the taxa irrespective of the shell morphology and arrangement of the crystal surfaces. In addition, protein domains controlling the crystal layers specific to aragonite and calcite were also identified. Intriguingly, a significant number of the identified SMPs contained domains related to immune functions. These were often are unique to each species implying their involvement not only in immunity, but also environmental adaptation. This suggests that the SMPs are selectively exported in a complex mix to endow the shell with both mechanical protection and biochemical defense.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Calcificación Fisiológica / Adaptación Fisiológica / Bivalvos / Exoesqueleto Límite: Animals Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Calcificación Fisiológica / Adaptación Fisiológica / Bivalvos / Exoesqueleto Límite: Animals Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article País de afiliación: Francia