Your browser doesn't support javascript.
loading
Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis.
Broddrick, Jared T; Rubin, Benjamin E; Welkie, David G; Du, Niu; Mih, Nathan; Diamond, Spencer; Lee, Jenny J; Golden, Susan S; Palsson, Bernhard O.
Afiliación
  • Broddrick JT; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093.
  • Rubin BE; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093.
  • Welkie DG; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093.
  • Du N; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093.
  • Mih N; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093.
  • Diamond S; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093.
  • Lee JJ; Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA 92037.
  • Golden SS; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093.
  • Palsson BO; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A ; 113(51): E8344-E8353, 2016 12 20.
Article en En | MEDLINE | ID: mdl-27911809
The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism. The model explicitly describes photon absorption and accounts for shading, resulting in the characteristic linear growth curve of photoautotrophs. GEM predictions of gene essentiality were compared with data obtained from recent dense-transposon mutagenesis experiments. This dataset allowed major improvements to the accuracy of the model. Furthermore, discrepancies between GEM predictions and the in vivo dataset revealed biological characteristics, such as the importance of a truncated, linear TCA pathway, low flux toward amino acid synthesis from photorespiration, and knowledge gaps within nucleotide metabolism. Coupling of strong experimental support and photoautotrophic modeling methods thus resulted in a highly accurate model of S. elongatus metabolism that highlights previously unknown areas of S. elongatus biology.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Cianobacterias / Genes Esenciales / Synechococcus Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Cianobacterias / Genes Esenciales / Synechococcus Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article