Your browser doesn't support javascript.
loading
Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles.
Fei, Z; Foley, J J; Gannett, W; Liu, M K; Dai, S; Ni, G X; Zettl, A; Fogler, M M; Wiederrecht, G P; Gray, S K; Basov, D N.
Afiliación
  • Fei Z; Department of Physics, University of California, San Diego , La Jolla, California 92093, United States.
  • Foley JJ; Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States.
  • Gannett W; Department of Physics and Astronomy, Iowa State University , Ames, Iowa 50011, United States.
  • Liu MK; Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States.
  • Dai S; Department of Chemistry, William Paterson University , Wayne, New Jersey 07470, United States.
  • Ni GX; Department of Physics, University of California at Berkeley , Berkeley, California 94720, United States.
  • Zettl A; Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
  • Fogler MM; Department of Physics, University of California, San Diego , La Jolla, California 92093, United States.
  • Wiederrecht GP; Department of Physics and Astronomy, Stony Brook University , Stony Brook, New York 11794, United States.
  • Gray SK; Department of Physics, University of California, San Diego , La Jolla, California 92093, United States.
  • Basov DN; Department of Physics, University of California, San Diego , La Jolla, California 92093, United States.
Nano Lett ; 16(12): 7842-7848, 2016 12 14.
Article en En | MEDLINE | ID: mdl-27960518
ABSTRACT
We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.
Palabras clave
Buscar en Google
Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos