Your browser doesn't support javascript.
loading
Detection and Labeling of Vertebrae in MR Images Using Deep Learning with Clinical Annotations as Training Data.
Forsberg, Daniel; Sjöblom, Erik; Sunshine, Jeffrey L.
Afiliación
  • Forsberg D; Sectra, Teknikringen 20, 583 30, Linköping, SE, Sweden. daniel.forsberg@sectra.com.
  • Sjöblom E; Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA. daniel.forsberg@sectra.com.
  • Sunshine JL; Sectra, Teknikringen 20, 583 30, Linköping, SE, Sweden.
J Digit Imaging ; 30(4): 406-412, 2017 Aug.
Article en En | MEDLINE | ID: mdl-28083827
The purpose of this study was to investigate the potential of using clinically provided spine label annotations stored in a single institution image archive as training data for deep learning-based vertebral detection and labeling pipelines. Lumbar and cervical magnetic resonance imaging cases with annotated spine labels were identified and exported from an image archive. Two separate pipelines were configured and trained for lumbar and cervical cases respectively, using the same setup with convolutional neural networks for detection and parts-based graphical models to label the vertebrae. The detection sensitivity, precision and accuracy rates ranged between 99.1-99.8, 99.6-100, and 98.8-99.8% respectively, the average localization error ranges were 1.18-1.24 and 2.38-2.60 mm for cervical and lumbar cases respectively, and with a labeling accuracy of 96.0-97.0%. Failed labeling results typically involved failed S1 detections or missed vertebrae that were not fully visible on the image. These results show that clinically annotated image data from one image archive is sufficient to train a deep learning-based pipeline for accurate detection and labeling of MR images depicting the spine. Further, these results support using deep learning to assist radiologists in their work by providing highly accurate labels that only require rapid confirmation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Columna Vertebral / Imagen por Resonancia Magnética / Sistemas de Información Radiológica / Redes Neurales de la Computación / Aprendizaje Automático Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Columna Vertebral / Imagen por Resonancia Magnética / Sistemas de Información Radiológica / Redes Neurales de la Computación / Aprendizaje Automático Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Suecia