Your browser doesn't support javascript.
loading
Electrochemical Reduction of Oxygen in Aprotic Ionic Liquids Containing Metal Cations: A Case Study on the Na-O2 system.
Azaceta, Eneko; Lutz, Lukas; Grimaud, Alexis; Vicent-Luna, Jose Manuel; Hamad, Said; Yate, Luis; Cabañero, German; Grande, Hans-Jurgen; Anta, Juan A; Tarascon, Jean-Marie; Tena-Zaera, Ramon.
Afiliación
  • Azaceta E; Nanomaterials Unit, IK4-Cidetec, Paseo Miramon 196, 20009, Donostia-SanSebastián, Spain.
  • Lutz L; Chemistry of Materials and Energy, College de France, Place Marcelin Berthelot 11, 75005, Paris, France.
  • Grimaud A; Chemistry of Materials and Energy, College de France, Place Marcelin Berthelot 11, 75005, Paris, France.
  • Vicent-Luna JM; Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, Seville, Spain.
  • Hamad S; Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, Seville, Spain.
  • Yate L; CIC-Biomagune, Paseo Miramón 182, 20009, Donostia-San Sebastián, Spain.
  • Cabañero G; Nanomaterials Unit, IK4-Cidetec, Paseo Miramon 196, 20009, Donostia-SanSebastián, Spain.
  • Grande HJ; Nanomaterials Unit, IK4-Cidetec, Paseo Miramon 196, 20009, Donostia-SanSebastián, Spain.
  • Anta JA; Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, Seville, Spain.
  • Tarascon JM; Chemistry of Materials and Energy, College de France, Place Marcelin Berthelot 11, 75005, Paris, France.
  • Tena-Zaera R; Nanomaterials Unit, IK4-Cidetec, Paseo Miramon 196, 20009, Donostia-SanSebastián, Spain.
ChemSusChem ; 10(7): 1616-1623, 2017 04 10.
Article en En | MEDLINE | ID: mdl-28106342
ABSTRACT
Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (Mn+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate Mn+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of Mn+ on oxygen reduction. A case study on the Na-O2 system is described in detail. Among other things, the Na+ concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oxígeno / Sodio / Líquidos Iónicos Tipo de estudio: Prognostic_studies Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oxígeno / Sodio / Líquidos Iónicos Tipo de estudio: Prognostic_studies Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: España