Your browser doesn't support javascript.
loading
Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions.
Men, Yujie; Yu, Ke; Bælum, Jacob; Gao, Ying; Tremblay, Julien; Prestat, Emmanuel; Stenuit, Ben; Tringe, Susannah G; Jansson, Janet; Zhang, Tong; Alvarez-Cohen, Lisa.
Afiliación
  • Men Y; Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA ymen2@illinois.edu.
  • Yu K; Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA.
  • Bælum J; Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Gao Y; Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA.
  • Tremblay J; School of Environment, Tsinghua University, Beijing, China.
  • Prestat E; National Research Council Canada, Montreal, Quebec, Canada.
  • Stenuit B; Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Tringe SG; Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA.
  • Jansson J; DOE Joint Genome Institute, Walnut Creek, California, USA.
  • Zhang T; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.
  • Alvarez-Cohen L; The University of Hong Kong, Hong Kong.
Appl Environ Microbiol ; 83(8)2017 04 15.
Article en En | MEDLINE | ID: mdl-28188205
ABSTRACT
The aim of this study is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.IMPORTANCE The key chloroethene-dechlorinating bacterium Dehalococcoides mccartyi is a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions between Dehalococcoides and the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles of Veillonellaceae species in the communities compared to other coexisting community members in producing and providing corrinoids for Dehalococcoides species under cobalamin-limited conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Vitamina B 12 / Perfilación de la Expresión Génica / Chloroflexi / Metagenómica / Consorcios Microbianos Idioma: En Revista: Appl Environ Microbiol Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Vitamina B 12 / Perfilación de la Expresión Génica / Chloroflexi / Metagenómica / Consorcios Microbianos Idioma: En Revista: Appl Environ Microbiol Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos